Answer:
No.of moles of C is , n = mass/molar mass = 75.46 g / 12 (g/mol) = 6.3 moles No.of moles of H is , n' = mass/molar mass = 4.43 g / 1.0(g/mol) = 4.43 moles No.of moles of O is , n'' = mass/molar mass = 20.10 g / 16(g/mol) =1.25 moles Ratio to the no.of moles of C,H& O is 6.3 : 4.43 : 1.25 In the simple integer ratio is ( 6.3/1.25) : ( 4.43/1.25) : (1.25/1.25) 5.04 :3.5 : 1
Explanation:
Answer:
b) 3.10
Explanation:
HF ⇄ H
+ + F
Using Henderson-Hasselbalch Equation:
pH = pKa + log [A-]/[HA].
Where;
pKa = Dissociation constant = -log Ka
Hence, pKa of HF = -log 7.2 x 10^-4 = 3.14266
[A-] = concentration of conjugate base after dissociation = moles of base/total volume
= 0.15 x 0.3/0.8
= 0.05625 M
[HA] = concentration of the acid = moles of acid/total volume
= 0.10 x 0.5/0.8
= 0.0625 M
Note: <em>Total volume = 500 + 300 = 800 mL = 0.8 dm3</em>
pH = 3.14266 + log [0.05625/0.0625]
= 3.14267 + (-0.04575749056)
= 3.09691250944
<em>From all the available options below:</em>
<em>a) 2.97
</em>
<em>b) 3.10
</em>
<em>c) 3.19
</em>
<em>d) 3.22
</em>
<em>e) 3.32</em>
The correct option is b.
Hello!
The half-life is the time of half-disintegration, it is the time in which half of the atoms of an isotope disintegrate.
We have the following data:
mo (initial mass) = 53.3 mg
m (final mass after time T) = ? (in mg)
x (number of periods elapsed) = ?
P (Half-life) = 10.0 minutes
T (Elapsed time for sample reduction) = 25.9 minutes
Let's find the number of periods elapsed (x), let us see:






Now, let's find the final mass (m) of this isotope after the elapsed time, let's see:




I Hope this helps, greetings ... DexteR! =)
Answer: B. The element called tin is a metal with the chemical symbol Sn.
Explanation:
A is incorrect because Ni is Nickel, not Niobium.
C is incorrect because Carbon is a nonmetal and its symbol is C, not Cr.
D is incorrect because Copper's symbol is Cu, not Ce.
E is incorrect because As is the symbol for Arsenic, not Astatine.