Answer:
This question is incomplete but the completed question is in the attachment below. And the correct is b
Explanation:
Specific heat capacity can be defined as the amount of heat required to raise to raise 1 kg of a substance by 1 kelvin. Thus, this means that when the specific heat capacity of a substance is high, it takes more energy to increase the temperature of that substance. This also means that when different substances are subjected to the same amount of heat, the substance with the higher specific heat capacity will absorb less heat; for example at a beach, water has a very high specific heat capacity, thus when the sand in the beach is hot, the beach water is still relatively cold.
From the description above, <u>it can be seen that the metal with the least specific capacity will absorb the greatest amount of heat, thus the metal is lead</u> with the specific heat capacity of 0.129 J/(g. °C).
Answer:
Hence the correct option is an option (b) Sr4, Cl,Br−,Na+.
Explanation:
Bromine and chlorine belong to an equivalent group. As we go down the group the dimensions increases which too there's a charge on the bromine atom. therefore the size of the Br- is going to be larger in comparison to the chlorine atom.
Sr atom is within the second group, and also it's below the above-mentioned atoms.so Sr is going to be the larger one among all the atoms.
Sodium and chlorine belong to an equivalent period .size decrease from left to right. but due to the charge on sodium its size decreases and there's an opportunity that Na+ size could be adequate for Cl.
Here we finally assume that two atoms are of an equivalent size (Na+ and Cl) which are less in size compared to the opposite two(Sr and Br-) during which one is greater (Sr)and the opposite is smaller(Br-).
Answer:
As of right now (4-7-2021), the physical science requirement for the SLP certificate must be met by completing coursework in the areas of <u>either chemistry </u><em><u>or</u></em><u> physics</u>.
The unit is the Kelvin, but most of the time 273 is subtracted from the Kelvin temperature and the new number is called "degrees Celsius".
Answer:
13.5 %
Explanation:
First we<u> calculate the mass of 500 mL of water</u>, using <em>its density</em>:
- 500 mL * 1.00 g/mL = 500 g
Then we <u>calculate the mass percent of potassium sulfate</u>, using the formula:
Mass of Potassium Sulfate / Total Mass * 100%
- 78 g / (78 + 500) g * 100 % = 13.5 %