<h2>
Hello!</h2>
The answer is: The new pressure is 1.67 atm.
<h2>
Why?</h2>
From the statement, we know that the temperature remains constant and the gas volume is changing, meaning that the new pressure will be different than the first pressure.
Since the temperature remains constant, we can calculate the new pressure using the Boyle's Law.
The Boyle's Law states that:

Where,
P is the pressure of the gas.
V is the volume of the gas.
Then, the given information is:

Remember, 1 L is equal to 1000 mL.
So,

So, calculating the new volume, we have:

Hence, the new pressure is 1.67 atm.
Have a nice day!
The answer is 615.91 grams of <span>n2f4
Solution:
225g F2 x [(1molF2)/(38gramsF2)] x [</span>(1molF2)/(1molN2F4)] x [(104.02 grams N2F4)/(1molN2F4)]
=615.91 grams
Answer:
It is the intermolecular forces acting between the molecules that cause attractions between them making them liquids or solids. The strength of Van der Waals forces depends primarily on the number of electrons in total in the molecule, so larger molecules will have higher boiling points.
Explanation:
Answer:
14.3mL you require to reach the half-equivalence point
Explanation:
A strong acid as HClO₄ reacts with a weak base as CH₃CH₂NH₂, thus:
CH₃CH₂NH₂ + HClO₄ → CH₃CH₂NH₃⁺ + ClO₄⁻
As the reaction is 1:1, to reach the equivalence point you require to add the moles of HClO₄ equal to moles CH₃CH₂NH₂ you add originally. Also, half-equivalence point requires to add half-moles of CH₃CH₂NH₂ you add originally.
Initial moles of CH₃CH₂NH₂ are:
20.8mL = 0.0208L × (0.51mol CH₃CH₂NH₂ / 1L) =
0.0106moles CH₃CH₂NH₂
To reach the half-equivalence point you require:
0.0106moles ÷ 2 = 0.005304 moles HClO₄
As concentration of HClO₄ is 0.37M, volume you require to add 0.005304moles is:
0.005304 moles HClO₄ ₓ (1L / 0.37mol) = 0.0143L =
<h3> 14.3mL you require to reach the half-equivalence point</h3>