Answer:
[HI] = 0.7126 M
Explanation:
Step 1: Data given
Kc = 54.3
Temperature = 703 K
Initial concentration of H2 and I2 = 0.453 M
Step 2: the balanced equation
H2 + I2 ⇆ 2HI
Step 3: The initial concentration
[H2] = 0.453 M
[I2] = 0.453 M
[HI] = 0 M
Step 4: The concentration at equilibrium
[H2] = 0.453 - X
[I2] = 0.453 - X
[HI] = 2X
Step 5: Calculate Kc
Kc = [Hi]² / [H2][I2]
54.3 = 4x² / (0.453 - X(0.453-X)
X = 0.3563
[H2] = 0.453 - 0.3563 = 0.0967 M
[I2] = 0.453 - 0.3563 = 0.0967 M
[HI] = 2X = 2*0.3563 = 0.7126 M
Answer:
The reaction will continue in the forward direction until all the NO or all the NO₂ is used up.
Explanation:
- <em>Le Châtelier's principle </em><em>states that when there is an dynamic equilibrium, and this equilibrium is disturbed by an external factor, the equilibrium will be shifted in the direction that can cancel the effect of the external factor to reattain the equilibrium.</em>
- So, according to Le Chatelier's principle, removing the product (N₂O₃) from the system means decreasing the concentration of the products; thus, the reaction will proceed forward to produce more product to minimize the stress of removing N₂O₃ from the system.
- <em>So, the reaction will continue in the forward direction until all the NO or all the NO₂ is used up.
</em>
<em></em>
Answer:
B) the chemicals are gaining energy from the surroundings.
Explanation:
The positive sign of the energy difference in a chemical reaction would indicate that the chemicals are gaining energy from the surroundings. This is what happens in an endothermic reaction.
In an endothermic reaction, heat is absorbed from the surroundings hence the surrounding becomes colder at the end of the changes.
- Here the energy change is assigned a positive value.
- This is because the heat energy level of the final state is higher than that of the initial state.
- So, the difference gives a positive value.
Answer:
a. polar solutes dissolve in polar solvents.
Explanation:
Polarity is a phenomenon that has to do with the positive and negative electric (ionic) charges of a molecule. A molecule with distinct positive and electric charge is said to be POLAR. However, water is said to be a universal solvent because it dissolves more substances than any other solvent can.
This solvent property of water is a function of its POLARITY. Polar solutes dissolve in polar solvents. Hence, only polar solutes can dissolve in water (a polar solvent). Hence, in this case, CH3OCH3 (ether) will dissolve in water because it is a POLAR molecule/solute.