The question is incomplete, complete question is ;
A deep-sea diver uses a gas cylinder with a volume of 10.0 L and a content of 51.8 g of
and 33.1 g of He. Calculate the partial pressure of each gas and the total pressure if the temperature of the gas is 21°C.Express the pressures in atmospheres to three significant digits separated by commas.
Answer:
Partial pressure of the oxygen gas is 3.91 atm.
Partial pressure of the helium gas is 20.0 atm
Total pressure of the gases is 24.0 atm
Explanation:
Moles of oxygen gas = 
Moles of helium gas = 
Total moles of gas = 
Volume of the cylinder = V = 10.0 L
Total pressure in the cylinder = P = ?
Temperature of the gas in cylinder = T = 21°C = 21 + 273 K = 294 K
PV = nRT ( ideal gas equation )


P = 23.88 atm ≈ 23.9
Partial pressure of the individual gas will be determined by the help of Dalton's law:
partial pressure = Total pressure × mole fraction of gas
Partial pressure of the oxygen gas


Partial pressure of the helium gas


We use prefixes in ionic compounds Don't use numeric prefixes like mono, di, tri, etc. when naming ionic compounds - they are used only to denote covalent molecular compounds.
<u>Explanation:</u>
Isotopes are defined as the chemical species of the same element which differs in the number of neutrons. The isotopes which are unstable are known as radioactive isotope. A radioactive (unstable )isotope can undergo 3 decay process:
1. Alpha Decay: In this decay process, a larger nuclei decays into smaller nuclei by releasing alpha particle. The particle released has a charge of +2 and a mass of 4 units.

2. Beta-minus decay: In this decay process, a neutron gets converted into a proton and an electron. the particle released during this process is a beta-particle.

3. Beta-plus decay: In this decay process, a protons gets converted into a neutron and electron-neutrino particle. The particle released during this process is a positron particle.

Isotopes which are unstable in nature can undergo these 3 decay processes.