1). the product of the two masses being gravitationally attracted to each other
2). the distance between their centers of mass
And that's IT. The gravitational force between them depends on
only those two things, nothing else.
Newtons first law states that if an objects velocity is changing a <u>force</u> must be acting on it.
Explanation:
Newton's first law of motion states that:
"An object at rest (or in uniform motion) will remain at rest (or will continue moving with the same velocity) unless acted upon an unbalanced force"
We can apply this law to a daily life example:
- Take a book at rest on a table: the forces acting on the book are balanced. If we do not apply any other force, we know that the book will remain at rest: this is exactly what is summarized in Newton's first law.
- Take a space probe moving in the interstellar space, very far from any planet or source of gravitational force. Since there are no forces acting on the proble, the probe will continue moving at the same velocity (same speed and same direction) forever, unless stopped by a new force acting on it.
This means that in order to put an object at rest in motion, or to stop an object already in motion, or to change its velocity, an unbalanced force needs to be applied: otherwise, the object will continue having the same velocity (which can be either zero or non-zero), so it will continue having same speed and same direction.
Learn more about Newton laws of motion:
brainly.com/question/11411375
brainly.com/question/1971321
brainly.com/question/2286502
brainly.com/question/2562700
#LearnwithBrainly
The bike is maintaining "constant velocity". He's moving at 15 m/s when we see him for the first time, 15 m/s later that day, and 15 m/s next week.
The car starts from zero, and goes 4.0 m/s FASTER each second. After one second, it's going 4.0 m/s. After 2 seconds, it's going 8 m/s. And after 3 seconds, it's going 12 m/s.
This is the point at which the question wants us to compare them ... 3 seconds. The bike is moving at 15 m/s and the car has sped up to 12 m/s. <em>The bike is moving faster than the car.</em>
If we hung around and kept watching for another second, the car would then be moving at 16 m/s, and would be moving faster than the bike. But we lost interest after answering the question, and we left at 3 seconds.
Set deer A's position to be the origin. Let
be the distance from deer A to deer C. We're given that deer B is 95 m away from deer C, which means the length of the vector
is 95 (or
). Then




1) KE=1/2*m*v^2
1/2*45*40^2
KE=36,000J
2) PE=mgh
45*9.81*30
PE=13243.5J