Answer:
the distance from the location of the center of gravity to the location of the center o mass for this system is 1.13m
Explanation:
Given that
m₁=4.4kg
x₁=+1.1m
m₂=3.7kg
x₂=+0.80m
m₃=2.9kg
x₃=+1.6m
The position of the center of mass is
Xcm = [m₁x₁ +m₂x₂ +m₃x₃]/(m₁+m₂+m₃)
= [(4.40kg)(1.1 m)+(3.70 kg)(0.80 m)+(2.90 kg)(1.60 m)]/(4.4 kg + 3.70 kg+2.90 kg)
= 1.13 m
The position of the center of gravity is 1.13m
Therefore, the distance from the location of the center of gravity to the location of the center o mass for this system is 1.13m
5m/s because all you have to do is add 3 and 8
<h2>
Spring constant is 14.72 N/m</h2>
Explanation:
We have for a spring
Force = Spring constant x Elongation
F = kx
Here force is weight of mass
F = W = mg = 0.54 x 9.81 = 5.3 N
Elongation, x = 36 cm = 0.36 m
Substituting
F = kx
5.3 = k x 0.36
k = 14.72 N/m
Spring constant is 14.72 N/m
Answer:
0.08735 kgm²
Explanation:
m = Mass of lower leg = 5 kg
L = Length of leg = 18 cm
g = Acceleration due to gravity = 9.81 m/s²
f = Frequency = 1.6 Hz
I = Moment of inertia
Time period is given by

Also

So,

The moment of inertia of the lower leg is 0.08735 kgm²
Answer:
Explanation:
When a wire of length L is moved with velocity v , perpendicular to magnetic field B , EMF will be produced at its two ends . EMF can be calculated with the help of following expression
EMF = BLv
As per this formula , EMF produced will not depend upon number of electrons in the magnetic field.
So B is the right choice.