Answer:
gravy+gravity = time X nuclious so your ANSWER WILL BE gravity ;-;
Explanation:
Answer:
-5.1 kg m/s
Explanation:
Impulse is the change in momentum.
Change in momentum= final momentum - initial momentum=m
+m
Plugging in the values= -0.15*24 - (0.15*10) (The motion towards the pitcher is negative as the initial motion is considered to be positive)
Impulse=-5.1 kg m/s (-ve means that it is the impulse towards the pitcher)
The correct answer is c) 28 m/s.
Let's find the step-by-step solution. The motion of the monkey is an uniformly accelerated motion, with acceleration equal to

. The initial velocity of the monkey is zero, while the distance covered is S=40 m. Therefore, we can use the following relationship to find vf, the final velocity of the monkey:

from which
Answer:
The mouse runs faster to have the same kinetic energy as the elephant.
Explanation:
Note from the equation given, mass (m) is directly proportional to KE. This means an elephant with more mass will have more KE, therefore, for the mouse to compensate, it has to run faster because its KE is smaller because of its small mass. If both run at the same speed, the elephant would have thousands of times more kinetic energy than the mouse. So the mouse has to run faster so that its speed compansates for its smaller weight.