Answer:
Hydroxide concentration of the sample is 1.3x10⁻⁶M
Explanation:
The equilibrium constant of water, Kw, is:
H₂O(l) ⇄ H⁺(aq) + OH⁻(aq)
Kw is defined as:
Kw = 1.7x10⁻¹² = [H⁺] [OH⁻]
As the sample is of pure water, both H⁺ and OH⁻ ions have the same concentration because come from the same equilibrium, that is:
[H⁺] = [OH⁻]
We can write the Kw expression:
1.7x10⁻¹² = [OH⁻] [OH⁻]
1.7x10⁻¹² = [OH⁻]²
1.3x10⁻⁶M = [OH⁻]
<h3>Hydroxide concentration of the sample is 1.3x10⁻⁶M</h3>
Answer:
+ It reduces soil compactness
+ It increases soil fertility
Explanation:
Given what we know, we can confirm that option A is correct in that Stronger IMFs lead to stronger adhesion, producing rounder drops with a smaller diameter.
<h3>What are IMFs?</h3>
IMF is the acronym used to describe intermolecular forces. These forces include all of the forces that bind molecules together, of which water has plenty. This bonding force creates a high adhesion and thus gives water its surface tension which makes it stay together in the shape of a drop.
Therefore, we can confirm that stronger IMFs lead to stronger adhesion, producing rounder drops with a smaller diameter, and therefore that option A is correct.
To learn more about molecular forces visit:
brainly.com/question/25863653?referrer=searchResults
Answer: AgCl
Explanation:
When the reaction takes place in which the sodium chloride is reacted with silver nitrate then the products formed are sodium nitrate and silver chloride.
NaCl(aq) + AgNO3(aq) ⟶ NaNO3(aq) + AgCl (s)
This reaction is known as precipitation reaction in which the white precipitate of silver chloride is formed.
This precipitate is insoluble and separates out of the solution.
So, the correction answer is AgCl(silver chloride).