Answer:
this is because spreading it makes more sunlight hit the cloth which results in it drying faster
Answer:
16.6 mg
Explanation:
Step 1: Calculate the rate constant (k) for Iodine-131 decay
We know the half-life is t1/2 = 8.04 day. We can calculate the rate constant using the following expression.
k = ln2 / t1/2 = ln2 / 8.04 day = 0.0862 day⁻¹
Step 2: Calculate the mass of iodine after 8.52 days
Iodine-131 decays following first-order kinetics. Given the initial mass (I₀ = 34.7 mg) and the time elapsed (t = 8.52 day), we can calculate the mass of iodine-131 using the following expression.
ln I = ln I₀ - k × t
ln I = ln 34.7 - 0.0862 day⁻¹ × 8.52 day
I = 16.6 mg
Answer: All cells are made from the same major classes of organic molecules: nucleic acids, proteins, carbohydrates, and lipids.
Explanation: please mark as brainliest
(4 mol H2O) x (112 kJ / 3 mol H2O) = 149 kJ
<span>(14.5 g HCl) / (36.4611 g HCl/mol) x (112 kJ / 3 mol HCl) = 14.9 kJ </span>
<span>(475 kJ) / (181 kJ / 2 mol HgO) x (216.5894 g HgO/mol) = 1137 g HgO </span>
<span>(179 kJ) / (181 kJ / 1 mol O2) x (31.99886 g O2/mol) = 31.6 g O2 </span>
<span>(145 kJ) / (112 kJ / 3 mol Cl2) x (70.9064 g Cl2/mol) = 275 g Cl2 </span>
<span>(14.5 g S2Cl2) / (135.0360 g S2Cl2/mol) x (112 kJ / 1 mol S2Cl2) = 12.0 kJ </span>
<span>CaCO3 + 2 NH3 → CaCN2 + 3 H2O; ∆H = –90.0 kJ </span>
<span>(798 kJ) / (90.0 kJ / 2 mol HN3) x (17.03056 g NH3/mol) = 302 g NH3 </span>
<span>(19.7 g H2O) / (18.01532 g H2O/mol) x (90.0 kJ / 3 mol H2O) = 32.8 kJ</span>