Answer:
K = 0.5
Explanation:
Based on the reaction:
PCl₃ + Cl₂ ⇄ PCl₅
The equilibrium constant, K, is defined as:
K = P PCl₅ / P PCl₃ * P Cl₂
<em>Where P represent the pressure at the equilibrium for each one of the gases involved in the equilibrium.</em>
<em />
As:
P PCl₅ = 1.0atm
P PCl₃ = 1.0atm
P Cl₂ = 2.0atm
K = 1.0atm / 1.0atm * 2.0atm
<h3>K = 0.5</h3>
A law is statement about an observed concept. A theory involves the explanation of scientific concepts or principles. A hypothesis is the predicted explanation about some concepts that has to be tested in order to prove it to be right. An observation is the observing the results of a scientific experiment carried out to test an hypothesis.
Here the given statement 'A chemist mixes sodium with water and witnesses a violent reaction between the metal and water,' can be classified as an observation as it explains what the chemists observes as a result of his chemical experiment or test..
Oxygen and Hydrogen would most likely form a covalent bond that is polar, or a polar covalent bond. Due to the electronegativity difference between the 2 elements, unequal sharing of the valence electrons will occur, electrons being in closer proximity to Oxygen and farther away from Hydrogen. Resulting in the characteristic partial positive and negative charges to appear for the respective elements.
<h3>
Answer:</h3>
1.9 moles
<h3>
Explanation:</h3>
Carbon dioxide (CO₂) is a compound that is made up of carbon and oxygen elements.
It contains 2 moles of oxygen atoms and 1 mole of carbon atoms
Therefore;
We would say, 1 mole of CO₂ → 2 moles of Oxygen atoms + 1 mole of carbon atoms
Thus;
If a sample of CO₂ contains 3.8 moles of oxygen atoms we could use mole ratio to determine the moles of CO₂
Mole ratio of CO₂ to Oxygen is 1 : 2
Therefore;
Moles of CO₂ = 3.8 moles ÷ 2
= 1.9 moles
Hence, the moles of CO₂ present in a sample that would produce 3.8 moles of Oxygen atoms is 1.9 moles