<span>Amino acids which are known to be linked by peptide bonds they form polypeptide chains.
Proteins are linear polymers are formed by way of linking an a-carboxy group of one amino acid to a-amino of different amino acids which have peptide bond. The formation which results from two amino acids which result in a loss of a water molecule. The best process of the reaction is hydrolysis.</span>
Types of Bonds can be predicted by calculating the
difference in electronegativity.
If, Electronegativity difference is,
Less
than 0.4 then it is Non Polar Covalent
Between 0.4 and 1.7 then it is Polar Covalent
Greater than 1.7 then it is Ionic
For Be and F,
E.N of Fluorine = 3.98
E.N of Beryllium = 1.57
________
E.N Difference 2.41 (Ionic Bond)
For H and Cl,
E.N of Chorine = 3.16
E.N of Hydrogen = 2.20
________
E.N Difference 0.96 (Polar Covalent Bond)
For Na and O,
E.N of Oxygen = 3.44
E.N of Sodium = 0.93
________
E.N Difference 2.51 (Ionic Bond)
For F and F,
E.N of Fluorine = 3.98
E.N of Fluorine = 3.98
________
E.N Difference 0.00 (Non-Polar Covalent Bond)
Result:
A polar covalent bond is formed between Hydrogen and Chlorine atoms.
<span>9.40x10^19 molecules.
The balanced equation for ammonia is:
N2 + 3H2 ==> 2NH3
So for every 3 moles of hydrogen gas, 2 moles of ammonia is produced. So let's calculate the molar mass of hydrogen and ammonia, starting with the respective atomic weights:
Atomic weight nitrogen = 14.0067
Atomic weight hydrogen = 1.00794
Molar mass H2 = 2 * 1.00794 = 2.01588 g/mol
Molar mass NH3 = 14.0067 + 3 * 1.00794 = 17.03052 g/mol
Moles H2 = 4.72 x 10^-4 g / 2.01588 g/mol = 2.34140921086573x10^-4 mol
Moles NH3 = 2.34140921086573x10^-4 mol * (2/3) = 1.56094x10^-4 mol
Now to convert from moles to molecules, just multiply by Avogadro's number:
1.56094x10^-4 * 6.0221409x10^23 = 9.400197448261x10^19
Rounding to 3 significant figures gives 9.40x10^19 molecules.</span>
The electron sea model for metals suggest that the valence electrons drift freely around the metal cations.
Answer: B
Explanation
The sea model of electron is used for describing the mechanism of metallic bonding.
The metallic bonding generally occurs between 2 or more metals leading to the formation of alloys.
According to electron sea model, the electrons which contributes to the metallic bond are mostly the valence electrons of the atoms, these valence electrons get de-localized and can move freely around the nuclei of other atoms.
Overall, it seems like nuclei of positive charge is surrounded by sea of negative electrons.
Answer:the answer is D
Explanation:
I have already taken the exam. Hope this helps