Answer:
There is a production of 11.6 moles of CO₂
Explanation:
The reaction is this:
2C₂H₆(g) + 7O₂(g) ⟶ 4CO₂(g) + 6H₂O(g)
2 moles of ethane reacts with 7 moles of oxygen, to make 4 mol of dioxide and 6 moles of water vapor.
If the oxygen is in excess, we make the calculate with the ethane (limiting reactant)
2 moles of ethane produce 4 moles of dioxide
5.8 moles of ethane produce (5.8 .4)/2 = 11.6 moles
Albert Einstein was responsible for the general theory of relativity. The general theory of relativity explains that what we recognize as the force of gravity in fact arises from the curvature of space and time.
In the latency of matter and energy it can evolve, stretch and morph. Forming ridges, valleys and mountains that cause bodies moving through it to curve and zig-zag.
Answer:
The symbol for this ion is Ni^2+
Not sure though
What is the question? Because that’s true
Answer:
111 L
Explanation:
Calculation of moles of hydrogen gas:-
Mass of
= 18.6 g
Molar mass of
= 2.01588 g/mol

According to the given reaction:-

2 moles of hydrogen gas on reaction produces one mole of acetic acid gas.
So,
1 mole of hydrogen gas on reaction produces
mole of acetic acid gas.
Also,
9.23 mole of hydrogen gas on reaction produces
mole of acetic acid gas.
Moles of acetic acid gas = 4.615 moles
Given that:
Temperature = 35 °C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T = (35 + 273.15) K = 308.15 K
n = 4.615 moles
P = 1.05 atm
V = ?
Using ideal gas equation as:

where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 0.0821 L atm/ K mol
Applying the equation as:
1.05 atm × V = 4.615 moles ×0.0821 L atm/ K mol × 308.15 K
<u>⇒V = 111 L</u>