Answer:
B. Valence Electron Pairs
Explanation:
Valence-shell electron-pair repulsion, or VSEPR, describes the shape of molecules by determining the repulsion of valence electrons. Therefore, our answer is B.
Answer:
Yes, yield.
Explanation:
N2(g) + 3 H2(g) → 2 NH3 (g) balanced equation
First, find limiting reactant:
Moles H2 = 1.83 g x 1 mole/2 g = 0.915 moles H2
Moles N2 = 9.84 g N2 x 1 mole/28 g = 0.351 moles N2
The mole ratio of H2: N2 is 3:1, so H2 is limiting (0.915 is less than 3 x 0.351)
Theoretical yield of NH3 = 0.915 mol H2 x 2 mol NH3/3 mol H2 = 0.61 moles NH3
Answer:
Explanation:
We want the energy required for the transition:
CO 2
(
s
)
+
Δ
→
C
O
2
(
g
)
Explanation:
We assume that the temperature of the gas and the solid are EQUAL.
And thus we simply have to work out the product:
2
×
10^
3
⋅
g
×
196.3
⋅
J
⋅
g
−
1 to get an answer in Joules as required.
What would be the energy change for the reverse transition:
C
O
2
(
g
)
+
→
C
O
2
(
s
)
?
There are several things that can help scientists evaluate which category something belongs to. The similarity in features is one of them. If two skulls looked alike, they were probably species of the same evolutionary category. For example say humans and monkeys rather than humans and dogs.
Similarly fossils have helped scientists categorise species. Study of the chromosomes (in cases with available chromosomes) can help scientists figure out a lot about the subjects and categorise them.
Answer:
example of carbonate containing oxygen :
( calcium carbonate having 3 atoms of oxygen )
example of oxide containing oxygen :
( carbon dioxide having 2 atoms of oxygen )