Answer:
The elements in each group have the same number of electrons in the outer orbital. Those outer electrons are also called valence electrons. They are the electrons involved in chemical bonds with other elements. Every element in the first column (group one) has one electron in its outer shell.
Explanation:
Answer:
Polyhydroxyl alcohols
Explanation:
Whenever we have several C-OH bonds, we have a polyhydroxyl alcohol. For example, if we have just one alcohol group, that is, an R-OH group, then the naming is simple, say, we have EtOH, it's ethanol.
The problem becomes more complicated when we have several hydroxyl groups present in the alcohol. Let's say we have an ethane molecule and we replace the hydrogen atoms of carbon 1 and 2 with hydroxyl groups. In that case, we have 1,2-ethanediol. Similarly, we can have triols etc.
That said, we have poly (several) hydroxyl groups and we can generalize this to having polyhydroxyl alcohols.
Q= mcΔT
1623 = 33.69g x c x (110.8 - 29.4)
1623 = 2742.366 g•°C x c
c = 0.59j/g•°C
Answer: It is important for an equation to be balanced because if it is not then the reactants won't match the products.
Explanation: I don't know if you will understand this but here:
Let's say you're cooking eggs, you're reactants so to speak would be 3 eggs and 1 tablespoon of oil so you put it together using heat and a pan. Your products have to match what you have in the beginning. You cannot have an equation that looks like this
Reactants = 3eggs + 1Tbsp oil ---pan/heat---> 6eggs + 1 cup of oil
You cannot get something from what you don't have. The number of how much of an element you have must be the same of both sides of the equation.