Answer:
A
Explanation:
the Molar mass will be smaller as the content of the container is not directly proportional to the temperature of the water bath.
Answer:
Repulsive forces exist only when atoms are very close to each other. (3/14) "They [the atoms] will approach until both nuclei will simply shove each other because both of them are positive." The balance between the attraction and repulsion forces determines how close the atoms can get. The relationships between the magnitude and direction of repulsive and attractive forces. A stable state of a bond is when attractive forces balance repulsion forces. “A stable state between two atoms is when they attract each other with a force that equals the force that they repel each other.”
Answer:
1.72 M
Explanation:
Molarity is the molar concentration of a solution. It can be calculated using the formula a follows:
Molarity = number of moles (n? ÷ volume (V)
According to the information provided in this question, the solution has 58.7 grams of MgCl2 in 359 ml of solution.
Using mole = mass/molar mass
Molar mass of MgCl2 = 24 + 35.5(2)
= 24 + 71
= 95g/mol
mole = 58.7g ÷ 95g/mol
mole = 0.618mol
Volume of solution = 359ml = 359/1000 = 0.359L
Molarity = 0.618mol ÷ 0.359L
Molarity = 1.72 M
When salt is ejected in the ocean as sea forms, the waters salinity increases because salt water is heavier so it’s lower