Hi there!
We can begin by calculating the time taken to reach its highest point (when the vertical velocity = 0).
Remember to break the velocity into its vertical and horizontal components.
Thus:
0 = vi - at
0 = 16sin(33°) - 9.8(t)
9.8t = 16sin(33°)
t = .889 sec
Find the max height by plugging this time into the equation:
Δd = vit + 1/2at²
Δd = (16sin(33°))(.889) + 1/2(-9.8)(.889)²
Solve:
Δd = 7.747 - 3.873 = 3.8744 m
When two mechanical waves that have positive displacements from the equilibrium position meet and coincide, a constructive interference occurs.
Option A
<h3><u>
Explanation:</u></h3>
Considering the principle of superposition of waves; the resultant amplitude of an output wave due to interference of two or more waves at any point is given by individual addition of their amplitudes at that point. Two waves with positive displacements refer to the fact that crest of the both the waves are on the same side of displacement axis, either both are positive or both are negative, similarly with their troughs.
If such two waves with their crest on crest meet at any point, by superposition principle. their individual amplitude gets added up and hence the resultant wave after interference is greater in amplitude that both the individual waves. This is termed as a constructive interference. Destructive interference on the other hand is a condition when one of the two waves has a positive displacement and other has a negative displacement (a condition of one’s crest on other’s trough); resulting in amplitude subtraction.
Answer: 2. Solution A attains a higher temperature.
Explanation: Specific heat simply means, that amount of heat which is when supplied to a unit mass of a substance will raise its temperature by 1°C.
In the given situation we have equal masses of two solutions A & B, out of which A has lower specific heat which means that a unit mass of solution A requires lesser energy to raise its temperature by 1°C than the solution B.
Since, the masses of both the solutions are same and equal heat is supplied to both, the proportional condition will follow.
<em>We have a formula for such condition,</em>
.....................................(1)
where:
= temperature difference
- c= specific heat of the body
<u>Proving mathematically:</u>
<em>According to the given conditions</em>
- we have equal masses of two solutions A & B, i.e.

- equal heat is supplied to both the solutions, i.e.

- specific heat of solution A,

- specific heat of solution B,

&
are the change in temperatures of the respective solutions.
Now, putting the above values


Which proves that solution A attains a higher temperature than solution B.
Answer:
adapted from NOVA, a team of historians, engineers, and trade experts recreate a medieval throwing machine called a trebuchet. To launch a projectile, a trebuchet utilizes the transfer of gravitational potential energy into kinetic energy. A massive counterweight at one end of a lever falls because of gravity, causing the other end of the lever to rise and release a projectile from a sling. As part of their design process, the engineers use models to help evaluate how well their designs will work.
Explanation:
Impulse=force x time
force=mass x acceleration due to gravity
force=

impulse =3000 x 2.5= ( sorry i don't have a calculator right now so you must calculate this yourself)
I converted from kg to g because it is the standard.
Hope this helps you.