The atomic radius trend on the Periodic Table is as follows:
- Atomic radius increases down a column (or group)
- Atomic radius decreases across rows (or periods) from left to right
Looking at my Periodic Table, calcium, chromium, cobalt and copper are in that order from left to right in the same period, which simplifies things significantly.
Since these elements are in the same period, and given that we know atomic radius decreases across periods from left to right, we can see that calcium has the largest atomic radius.
The number of electrons in the outermost shell of an atom determines its reactivity. Noble gases have low reactivity because they have full electron shells. Halogens are highly reactive because they readily gain an electron to fill their outermost shell
C) change to water at the same temperature
Explanation:
Adding 334Joules of heat to one gram of ice at STP will cause ice to change to water at the same temperature.
- The heat of fusion is the amount of energy needed to melt a given mass of a solid
- It is also conversely the amount of energy removed from a substance to freeze it.
- The addition of this energy does not cause a decrease or increase in temperature.
- Only a phase change occurs.
Learn more:
Heat of fusion brainly.com/question/4050938
#learnwithBrainly
Answer:
Explanation:
It is a colorless liquid. It reacts with water to give adipic acid. It is prepared by treatment of adipic acid with thionyl chloride.
Adipoyl Chloride can be used in the synthesis of nylon. Also it is used in the synthesis of chiral polymer for membrane application.
Answer:-
2328.454 grams
Explanation:-
Volume V = 18.4 litres
Temperature T = 15 C + 273 = 288 K
Pressure P = 1.5 x 10^ 3 KPa
We know universal Gas constant R = 8.314 L KPa K-1 mol-1
Using the relation PV = nRT
Number of moles of oxygen gas n = PV / RT
Plugging in the values
n = (1.5 x 10^3 KPa ) x ( 18.4 litres ) / ( 8.314 L KPa K-1 mol-1 x 288 K)
n = 11.527 mol
Now the balanced chemical equation for this reaction is
2KNO3 --> 2KNO2 + O2
From the equation we can see that
1 mol of O2 is produced from 2 mol of KNO3.
∴ 11.527 mol of O2 is produced from 2 x 11.527 mol of KNO3.
= 23.054 mol of KNO3
Molar mass of KNO3 = 39 x 1 + 14 x 1 + 16 x 3 = 101 grams / mol
Mass of KNO3 = 23.054 mol x 101 gram / mol
= 2328.454 grams