Answer:
ions
Explanation:
atoms because of the charge
Answer:
Heating the mixture to a temperature above the boiling point of acetic acid, but below 100°C (the boiling point of water). The vapours from the acetic acid rise, and go into a tube. They are then condensed within the tube, and run off into a separate storage area. Because water can exist as a gas at pretty much any temperature above 0°C, it will result in an impure mixture, but repeatedly doing this will get the acetic acid to the desired purity.
The balanced equation
for the reaction is
CO(g) + 2H₂(g) ⇄ CH₃OH(g)
The given
concentrations are at equilibrium state. Hence we can use them directly in
calculation with the expression for the equilibrium constant, k.
expression for k can be written as
k = [CH₃OH(g)] / [CO(g)] [H₂<span>(g) ]²
</span>[H₂<span>]=0.072 M
[CO]= 0.020M
[CH</span>₃OH]= 0.030 M
From substitution,
k = 0.030
M / 0.020 M x (0.072 M)²
k =
289.35 M⁻²
<span>
Hence, equilibrium constant for the given reaction at 700 K is 289.35 M</span>⁻².
<span> </span>
Acetone is miscible because it has a C=O bond, while its C-C-C carbon chain makes it miscible with hexane. However, hexane is non-polar while water is polar, and since the two molecules have different polarities, they are immiscible.