Answer:
The temperature of star is 5473.87 K
Explanation:
Given:
Energy difference
eV
The ratio of number of particle 
Degeneracy ratio 
From the formula of boltzmann distribution for population levels,

Where
boltzmann constant = 




K
Therefore, the temperature of star is 5473.87 K
The potential energy of the block is given by:
V = m*g*h
m mass
g = 9.81m/s²
h height
The potential energy of a spring is given by:
V = 0.5 * k * x²
k spring constant
x compression of the spring
If the block starts from rest it has potential energy, but no kinetic energy. As it slides down the incline potential energy is converted into kinetic energy. When the block hits the spring the kinetic energy is converted into spring's potential energy. If the spring is fully compressed and the block is at rest again, the block has transferred all its energy into the spring. No energy is lost. So we can write:
m * g * h = 0.5 * k * x²
m = 0.5 kg
g = 9.81 m/s²
h = 2.5m * sin 37° = 1,5 m
x = 0,6 m
Solve for k.
k = 2 * m * g * h / x² = 40.8 N/m
Answer:
4.9 m/s
Explanation:
Since the motion of the ball is a uniformly accelerated motion (constant acceleration), we can solve the problem by using the following suvat equation:

where
v is the final velocity
u is the initial velocity
a is the acceleration
s is the distance covered
For the ball in this problem,
u = 0 (it starts from rest)
is the acceleration
s = 3 m is the distance covered
Solving for v,
