1. Volume of the solution (B)
2. Celery (D)
3. Hydroxide ions in solution (A)
Answer:because each speaker has a large angle of of coverage (horizontal and vertical)
They place them apart to prevent their signals (sounds produced) from getting into each other's way as this may cause interference (which may be destructive.
Explanation:
Answer:
<em>The current is 11 Amperes</em>
Explanation:
<u>Electric Current</u>
The electric current is defined as a stream of charged particles that move through a conductive path.
The current intensity can be calculated as:

Where:
Q = Electric charge
t = Time taken by the charge to move through the conductor
The current intensity is often measured in Amperes.
The charge passing through a point in a circuit is Q= 55 c during t=5 seconds, thus the current intensity is:

I = 11 Amp
The current is 11 Amperes
Answer:
Incomplete question
This is the completed question
If the resistor in the circuit had a larger resistance then the current would be then have to be proportionally smaller. Because the batteries each give off 1.5 volts then the current would have to be the variable that would change. What affect would using a 12V car battery have on the operation of your circuit? (Do not try this.) What would happen to the current? What would happen to the resistor?
Explanation:
Using ohms law as our basis
Ohms law state that, the voltage in an ohmic conductor is directly proportional to the current
V∝I
Resistance is the constant of proportionality
Then
V=iR
Since we want a relationship between current and resistance.
then, I=V/R
So, current is inversely proportional to Resistance
as the current increase the resistance reduce and as the current reduces the resistance increases.
a. So, increasing the voltage from 1.5V to 12V increases the current In the circuit because voltage Is directly proportional to I.
From ohms law
V=iR
When v =1.5V
I=1.5/R
When V increase to 12V
I=12/R
I.e, it increases by a factor of 8. Eight times it's initial value
b. Now, the resistance in the circuit is the constant of proportionality and it doesn't change in a given circuit expect when using a variable resistoa r like rheostat.
Answer:
The final velocity of the car is 1.85 m/s
Explanation:
Hi there!
The initial kinetic energy of the toy car can be calculated as follows:
KE = 1/2 · m · v²
Where:
KE = kinetic energy.
m = mass.
v = velocity.
KE = 1/2 · 0.100 kg · (2.66 m/s)² = 0.354 J
The gain in altitude produces a gain in potential energy. This gain in potential energy is equal to the loss in kinetic energy. So let´s calculate the potential energy of the toy car after gaining an altitude of 0.186 m.
PE = m · g · h
Where:
PE = potential energy.
m = mass.
g = acceleration due to gravity.
h = height.
PE = 0.100 kg · 9.8 m/s² · 0.186 m = 0.182 J
The final kinetic energy will be: 0.354 J - 0.182 J = 0.172.
Using the equation of kinetic energy, we can obtain the velocity of the toy car after running up the slope:
KE = 1/2 · m · v²
0.172 J = 1/2 · 0.100 kg · v²
2 · 0.172 J / 0.100 kg = v²
v = 1.85 m/s
The final velocity of the car is 1.85 m/s