Answer:
The answer is IONIC BOND
Explanation:
Steroidogenic acute regulatory, (StAR) protein is a type of globular protein, which allows it act as an active catalyst on substrates. Because the substrates on which enzymes act usually have higher molecular weights of several hundred as compared to the enzymes, only a fraction of the enzyme's surface is in contact with the substrate. This region of contact called the <em>active site</em>, is as a result of the protein folding itself into a tertiary structure.
Once the correct substrate has bound at the active site of the enzyme, an enzyme-substrate complex is created. The substrate is usually held in the complex by combinations of electrical attraction, hydrophobic repulsion, or hydrogen bonding between and from the amino acid; the strongest of which is the ionic/electrostatic bonding due to larger amount of ionic "R" groups in the protein structure.
So whilst all these inter-molecular interactions are possible, the strongest would be <u>ionic bond.</u>
Answer:
Sodium (Na) has atomic number 11.
The reaction between Na2S and CuSO4 will give us the balanced chemical reaction of,
Na2S + CUSO4 --> Na2SO4 + CuS
This means that for every 78g of Na2S, there needs to be 159.6 g of CuSO4. The ratio is equal to 0.4887 of Na2S: 1 of CuSO4. Thus, for every 12.1g of CuSO4, we need only 5.91 g of Na2S. Thus, there is an excess of 9.58 g of Na2S. The answer is letter C.
I think the word might be a “troll”
<u>Answer and Explanation:</u>
Mercury combines with sulfur as follows -
Hg + S = HgS
Hg = 200,59
S = 32,066 Therefore 1.58 g of Hg will react with -
1.58 multiply with 32,066 divide by 200,96 of sulfur.
= 0.25211 g S
This will form 1.58 + 0.25211 g HgS = 1.83211 g HgS
The amount of S remaining = 1.10 - 0.25211 = 0.84789 g