Boiling-point elevation is a colligative property.
That means, the the boiling-point elevation depends on the molar content (fraction) of solute.
The dependency is ΔTb = Kb*m
Where ΔTb is the elevation in the boiling point, kb is the boiling constant, and m is the molality.
A solution of 6.00 g of Ca(NO3) in 30.0 g of water has 4 times the molal concentration of a solution of 3.00 g of Ca(NO3)2 in 60.0 g of water.:
(6.00g/molar mass) / 0.030kg = 200 /molar mass
(3.00g/molar mass) / 0.060kg = 50/molar mass
=> 200 / 50 = 4.
Then, given the direct proportion of the elevation of the boiling point with the molal concentration, the solution of 6.00 g of CaNO3 in 30 g of water will exhibit a greater boiling point elevation.
Or, what is the same, the solution with higher molality will have the higher boiling point.
Well you are at a 86% so t<span>his is considered a "B" grade on an average grade scale. If you take 50 points we would need to know the Total point you could have got in that class to be able to see how much a percent was the assignment work and then take that percentage of the assignment and subtract it from the 86% to see where on the scale you would fall in after the assignment points were taken off. Hope this helps :)
</span>
Answer:
oof idk I would suggest looking at an example and try going off that
Answer:
This experiment is uncontrolled because two different masses of substance A are used.
Explanation:
A controlled experiment is a structured experiment aimed at testing a particular observation or observations. The setup of a controlled experiment helps to determine the reason why a particular observation occurs and what must have led to it.
In the experiment highlighted above, different masses of a substance were used, they were heated to different temperatures. The set up does not show any correlation between the masses of substances heated and the temperatures. It is even difficult to try to predict the hypothesis for this kind of experimental set up. All the variables in play can best be assumed to be independent of one another.