Answer:
It helps shape, while holding and keeping organelles in their place.
Explanation:
Answer:
The answer to your question is given below
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
Zn + 2HCl —> ZnCl2 + H2
Thus, we can write out the atoms present in both the reactant and the product by doing a simple head count. The atoms present are listed below:
Element >>> Reactant >>> Product
Zn >>>>>>>> 1 >>>>>>>>>> 1
H >>>>>>>>> 2 >>>>>>>>> 2
Cl >>>>>>>>> 2 >>>>>>>>> 2
Answer:
2, strong acid
Explanation:
Data obtained from the question. This includes:
[H+] = 0.01 M
pH =?
pH of a solution can be obtained by using the following formula:
pH = –Log [H+]
pH = –Log 0.01
pH = 2
The pH of a solution ranging between 0 and 6 is declared to be an acid solution. The smaller the pH value, the stronger the acid.
Since the pH of the above solution is 2, it means the solution is a strong acid.
<h3>
<u>moles of H2SO4</u></h3>
Avogadro's number (6.022 × 1023) is defined as the number of atoms, molecules, or "units of anything" that are in a mole of that thing. So to find the number of moles in 3.4 x 1023 molecules of H2SO4, divide by 6.022 × 1023 molecules/mole and you get 0.5646 moles but there are only 2 sig figs in the given so we need to round to 2 sig figs. There are 0.56 moles in 3.4 x 1023 molecules of H2SO4
Note the way this works is to make sure the units are going to give us moles. To check, we do division of the units just like we were dividing two fractions:
(molecules of H2SO4) = (molecules of H2SO4)/1 and so we have 3.4 x 1023/6.022 × 1023 [(molecules of H2SO4)/1]/[(molecules of H2SO4)/(moles of H2SO4)]. Now, invert the denominator and multiply:
<h3 />