Answer:
6CO2 + 6H2O ----> C6H12O6 + 6O2
Explanation:
Photosynthesis is the process by which green plants manufacture their own food using sunlight in the presence of carbon dioxide water and chlorophyll.
Chlorophyll is the pigment in plants that absorbs light.
The equation of photosynthesis is shown in the answer section above. Sugar and oxygen are the first products of photosynthesis.
the two process that occur in a cell are
oxidation: this is loss of electron by electrode. the metal electrode loaes electrons and get oxidized and forms ions
the ions get migrated to solution
Reduction: here the ions present in solution gains electron and get deposited on electrodes.
so gain of electrons is by ions
electrode gains electrons is where reduction occurs, and the half cell in which the electrode loses electrons is where oxidation occurs.
Answer:
x(t) = −39e
−0.03t + 40.
Explanation:
Let V (t) be the volume of solution (water and
nitric acid) measured in liters after t minutes. Let x(t) be the volume of nitric acid
measured in liters after t minutes, and let c(t) be the concentration (by volume) of
nitric acid in solution after t minutes.
The volume of solution V (t) doesn’t change over time since the inflow and outflow
of solution is equal. Thus V = 200 L. The concentration of nitric acid c(t) is
c(t) = x(t)
V (t)
=
x(t)
200
.
We model this problem as
dx
dt = I(t) − O(t),
where I(t) is the input rate of nitric acid and O(t) is the output rate of nitric acid,
both measured in liters of nitric acid per minute. The input rate is
I(t) = 6 Lsol.
1 min
·
20 Lnit.
100 Lsol.
=
120 Lnit.
100 min
= 1.2 Lnit./min.
The output rate is
O(t) = (6 Lsol./min)c(t) = 6 Lsol.
1 min
·
x(t) Lnit.
200 Lsol.
=
3x(t) Lnit.
100 min
= 0.03 x(t) Lnit./min.
The equation is then
dx
dt = 1.2 − 0.03x,
or
dx
dt + 0.03x = 1.2, (1)
which is a linear equation. The initial condition condition is found in the following
way:
c(0) = 0.5% = 5 Lnit.
1000 Lsol.
=
x(0) Lnit.
200 Lsol.
.
Thus x(0) = 1.
In Eq. (1) we let P(t) = 0.03 and Q(t) = 1.2. The integrating factor for Eq. (1) is
µ(t) = exp Z
P(t) dt
= exp
0.03 Z
dt
= e
0.03t
.
The solution is
x(t) = 1
µ(t)
Z
µ(t)Q(t) dt + C
= Ce−0.03t + 1.2e
−0.03t
Z
e
0.03t
dt
= Ce−0.03t +
1.2
0.03
e
−0.03t
e
0.03t
= Ce−0.03t +
1.2
0.03
= Ce−0.03t + 40.
The constant is found using x(t) = 1:
x(0) = Ce−0.03(0) + 40 = C + 40 = 1.
Thus C = −39, and the solution is
x(t) = −39e
−0.03t + 40.
Potential energy<span> is the stored </span>energy<span> in an object due of its position or its configuration where as </span>Kinetic energy<span> is the </span>energy<span> which a body possesses because of its motion.</span>