Answer:
The provided length of the vertical curve is satisfactory for the reconstruction design speed of 60 mi/h
Explanation:
The explanation is shown on the first uploaded image
Answer:
938.7 milliseconds
Explanation:
Since the transmission rate is in bits, we will need to convert the packet size to Bits.
1 bytes = 8 bits
1 MiB = 2^20 bytes = 8 × 2^20 bits
5 MiB = 5 × 8 × 2^20 bits.
The formula for queueing delay of <em>n-th</em> packet is : (n - 1) × L/R
where L : packet size = 5 × 8 × 2^20 bits, n: packet number = 48 and R : transmission rate = 2.1 Gbps = 2.1 × 10^9 bits per second.
Therefore queueing delay for 48th packet = ( (48-1) ×5 × 8 × 2^20)/2.1 × 10^9
queueing delay for 48th packet = (47 ×40× 2^20)/2.1 × 10^9
queueing delay for 48th packet = 0.938725181 seconds
queueing delay for 48th packet = 938.725181 milliseconds = 938.7 milliseconds
Explanation:
A.
H = Aeσ^4
Using the stefan Boltzmann law
When we differentiate
dH/dT = 4AeσT³
dH/dT = 4(0.15)(0.9)(5.67)(10^-8)(650)³
= 8.4085
Exact error = 8.4085x20
= 168.17
H(650) = 0.15(0.9)(5.67)(10^-8)(650)⁴
= 1366.376watts
B.
Verifying values
H(T+ΔT) = 0.15(0.9)(5.67)(10)^-8(670)⁴
= 1542.468
H(T+ΔT) = 0.15(0.9)(5.67)(10^-8)(630)⁴
= 1205.8104
Error = 1542.468-1205.8104/2
= 168.329
ΔT = 40
H(T+ΔT) = 0.15(0.9)(5.67)(10)^-8(690)⁴
= 1735.05
H(T-ΔT) = 0.15(0.9)(5.67)(10^-8)(610)⁴
= 1735.05-1059.83/2
= 675.22/2
= 337.61