The acquisition of additional certifications with a personal refined craft skills can increase the odds for career advancemen.
<h3>What is a career advancement?</h3>
An advancement is achieved in a career if a professional use their skill sets, determination or perserverance to achieve new career height.
An example of a career advancement is when an employee progresses from entry-level position to management and transits from an occupation to another.
Therefore, the Option A is correct.
Read more about career advancement
<em>brainly.com/question/7053706</em>
Answer:
a) 159.07 MPa
b) 10.45 MPa
c) 79.535 MPa
Explanation:
Given data :
length of cantilever beam = 1.5m
outer width and height = 100 mm
wall thickness = 8mm
uniform load carried by beam along entire length= 6.5 kN/m
concentrated force at free end = 4kN
first we determine these values :
Mmax = ( 6.5 *(1.5) * (1.5/2) + 4 * 1.5 ) = 13312.5 N.m
Vmax = ( 6.5 * (1.5) + 4 ) = 13750 N
A) determine max bending stress
б =
=
= 159.07 MPa
B) Determine max transverse shear stress
attached below
ζ = 10.45 MPa
C) Determine max shear stress in the beam
This occurs at the top of the beam or at the centroidal axis
hence max stress in the beam = 159.07 / 2 = 79.535 MPa
attached below is the remaining solution
Answer:
a)
, b)
, c) 
Explanation:
A turbine is a steady-state devices which transforms fluid energy into mechanical energy and is modelled after the Principle of Mass Conservation and First Law of Thermodynamics, whose expressions are described hereafter:
Mass Balance

Energy Balance

Specific volumes and enthalpies are obtained from property tables for steam:
Inlet (Superheated Steam)


Outlet (Liquid-Vapor Mix)


a) The mass flow rate of the steam is:



b) The exit velocity of steam is:




c) The power output of the steam turbine is:



Answer:
a. Rotational speed of the drill = 375.96 rev/min
b. Feed rate = 75 mm/min
c. Approach allowance = 3.815 mm
d. Cutting time = 0.67 minutes
e. Metal removal rate after the drill bit reaches full diameter. = 9525 mm³/min
Explanation:
Here we have
a. N = v/(πD) = 15/(0.0127·π) = 375.96 rev/min
b. Feed rate = fr = Nf = 375.96 × 0.2 = 75 mm/min
c. Approach allowance = tan 118/2 = (12.7/2)/tan 118/2 = 3.815 mm
d. Approach allowance T∞ =L/fr = 50/75 = 0.67 minutes
e. R = 0.25πD²fr = 9525 mm³/min.
Answer:
The coefficient of thermal expansion tells us how much a material can expand due to heat.
Explanation:
Thermal expansion occurs when a material is subjected to heat and changes it's shape, area and volume as a result of that heat. How much that material changes is dependent on it's coefficient of thermal expansion.
Different materials have different coefficients of thermal expansion (i.e. It is a material property and differs from one material to the next). It is important to understand how materials behave when heated, especially for engineering applications when a change in dimension might pose a problem or risk (eg. building large structures).