Answer:
True
Explanation:
Because the <u>Electric Magnetic Field</u> is the work done per unit charge where other forms of energy is tranferred to electrical energy
Answer:
0.65 m/min
Explanation:
The volume of material to be removed is
80*8*10 = 650 cm^3
The tool has a diameter of 4 mm and a maximum axial cutting capacity of 50 mm, so its cross section normal to advance is
0.4*5 = 2 cm^2
If the groove have to be made in T = 5 minutes the advance speed would be
V/(S * T)
650/(2 * 5) = 65 cm/min = 0.65 m/min
Answer:
1. Conduction
2. Convection
3. Radiation
Explanation:
The 3 modes of heat transfer i an air conditioning system:
1. Conduction:
The transfer of heat by conduction takes place in solid and is when the conduction takes place as a result of direct contact in between the interacting material which transfer the heat energy from particle to particle thus conducting the heat through out the system.
2. Convection:
The other mode for the transfer of heat which takes place especially in fluids - gases and liquids is through the technique of convection in which the transfer of heat takes place by the circular motion of the atoms and molecules of the fluid which carries the heat energy and results in the distribution of the heated fluid in the entire system thus transferring all the heat energy in the entire system.
3. Radiation:
The third mode of heat transfer in the air conditioning system is through radiation. This method transfers the heat by making use of the electro-magnetic radiation in the infra red spectrum where the waves of the spectrum transfers the heat energy with the help of a medium or without any medium at all.
Thus making the radiation method of heat transfer as the only method out of the three methods which does not require the material medium for the transfer of heat energy.
Answer:
The average force F exherted by the nail over the hammer is 178.4 lbf.
Explanation:
The force F exherted by the nail over the hammer is defined as:
F = |I|/Δt
Where I and Δt are the magnitude of the impact and the period of time respectively. We know that the impact can be calculated as the difference in momentum:
I = ΔP = Pf - Pi
Where Pf and Pi are the momentum after and before the impact. Recalling for the definition for momentum:
P = m.v
Where m and v are the mass and the velocity of the body respectively. Notice that final hummer's momentum is zero due to the hammers de-acelerate to zero velocity. Then the momentum variation will be expressed as:
ΔP = - Pi = -m.vi
The initial velocity is given as 50 mph and we will expressed in ft/s:
vi = 50 mph * 1.47 ft/s/mph = 73.3 ft/s
By multiplyng by the mass of 1.8 lbs, we obtain the impulse I:
|I|= |ΔP|= |-m.vi| = 1.8 lb * 73.3 ft/s = 132 lb.ft/s
Dividing the impulse by a duration of 0.023 seconds, we finally find the force F:
F = 132 lb.ft/s / 0.023 s = 5740 lb.ft/s^2
Expressing in lbf:
F = 5740 lb.ft/s^2 * 0.031 lbf/lb.ft/s^2 = 178.4 lbf