Answer:
L = 475.718
T = 240.89 ft
M = 23.0195
LC = 472.728
R = 1225 ft
Explanation:
See the attached file for the calculation.
Answer:
The flexural strength of a specimen is = 78.3 M pa
Explanation:
Given data
Height = depth = 5 mm
Width = 10 mm
Length L = 45 mm
Load = 290 N
The flexural strength of a specimen is given by
78.3 M pa
Therefore the flexural strength of a specimen is = 78.3 M pa
Answer:
symbolic machine code.
Explanation:
The instructions in the language are closely linked to the machine's architecture.
Answer:
26.7 min
Explanation:
First, we will find the <u>time required to drill each hole</u>:
- N = 300 x 12/0.75 = 1527.7 rev/min
- fr = 1527.7 (0.015) = 22.916 in/min
Formula for <u>distance per hole</u>: 0.5 + A + 1.75
- A = 0.5 (0.75) tan (90-100 / 2) = 0.315 in
- Tm = (0.5 + 0.315 + 1.75) / 22.916 = 0.112 min
Now, we will calculate the <u>time required to draw back the drill form hole</u>:
= 0.112 / 2 = 0.056 min
Time to move between holes = 1.5 / 15 = 0.1 min
For 100 holes, the number of moves between holes = 99
Total time required to drill 100 holes (t):
t = 100 (0.112 + 0.056) + 99 (0.1) = 26.7 min
Answer:
From the main bearings, the oil passes through feed-holes into drilled passages in the crankshaft and on to the big-end bearings of the connecting rod.