Answer:
0.529
Explanation:
Let's consider the reaction A → Products
Since the units of the rate constant are s⁻1, this is a first-order reaction with respect to A.
We can find the concentration of A at a certain time t (
) using the following expression.
![[A]_{t}=[A]_{0}.e^{-k\times t}](https://tex.z-dn.net/?f=%5BA%5D_%7Bt%7D%3D%5BA%5D_%7B0%7D.e%5E%7B-k%5Ctimes%20t%7D)
where,
[A]₀: initial concentration of A
k: rate constant
![[A]_{t}=0.548M.e^{-3.6\times 10^{-4}s^{-1}\times 99.2s }](https://tex.z-dn.net/?f=%5BA%5D_%7Bt%7D%3D0.548M.e%5E%7B-3.6%5Ctimes%2010%5E%7B-4%7Ds%5E%7B-1%7D%5Ctimes%2099.2s%20%7D)
![[A]_{t}=0.529 M](https://tex.z-dn.net/?f=%5BA%5D_%7Bt%7D%3D0.529%20M)
Answer:
The chemical formula for ammonium hypochlorite is NH4ClO.
The chemical formula for ammonium nitrate is NH4NO3.
Explanation:
These two are correct
Try this solution, all the details are described in the attached picture.
Molarity of the resulting solution will be 1.33 M.
<u>Explanation:</u>
First we have to find the number of moles for each of the solution using the formula, moles = molarity × volume
For cup 1 = 1 M ×0.05 L = 0.05 moles
For cup 2 = 2.5 M × 0.05 L= 0.125 moles
For cup 3 = 0.5 M × 0.05 L = 0.025 moles
Total moles = 0.05 + 0.125 + 0.025 = 0.2 moles
We have to find the total volume as, 0.05 + 0.05 + 0.05 = 0.15 L
Now we have to find the molarity as, moles / volume = 0.2 moles/ 0.15 L = 1.33 M