Answer:
46 g
Explanation:
The balanced equation of the reaction between O and NO is
2 NO + O₂ ⇔ 2 NO₂
Now, you need to find the limiting reagent. Find the moles of each reactant and divide the moles by the coefficient in the equation.
NO: (80 g)/(30.006 g/mol) = 2.666 mol
(2.666 mol)/2 = 1.333
O₂: (16 g)/(31.998 g/mol) = 0.500 mol
(0.500 mol)/1 = 0.500 mol
Since O₂ is smaller, this is the limiting reagent.
The amount of NO₂ produced will depend on the limiting reagent. You need to look at the equation to determine the ratio. For every mole of O₂ reacted, 2 moles of NO₂ are produced.
To find grams of NO₂ produced, multiply moles of O₂ by the ratio of NO₂ to O₂. Then, convert moles of NO₂ to find grams.
0.500 mol O₂ × (2 mol NO₂/1 mol O₂) = 1.000 mol NO₂
1.000 mol × 46.005 g/mol = 46.005 g
You will produce 46 g of NO₂.
Answer:
Effectiveness and cold stream output temperature of the heat exchange Increases. So, Answer is b) Increases.
Explanation:
We have a heat exchanger, and it is required to compare the effectiveness and cold stream output if the length is increased.
Heat exchangers are engineering devices used to transfer energy. Thermal energy is transferred from Fluid 1 - Hot fluid (HF) to a Fluid 2 - Cold Fluid (CF). Both fluids 1 and 2 can flow with different values of mass flow rate and different specific heat. When the streams go inside the heat exchanger Temperature of Fluid 1 (HF) will decrease, at the same time Temperature of the Fluid 2 (CF) will increase.
In this case, we need to analyze the behavior taking into account different lengths of heat exchangers. If the length of the heat exchanger increases, it means the transfer area will increases. Heat transfer will increase if the transfer area increases. In this sense, the increasing length is the same than increase heat transfer.
If the heat transfer increases, it means Fluid 1 (HF) will reduce its temperature, and at the same time Fluid 2 (CF) will increase its temperature.
Finally, Answer is b) Effectiveness and cold stream output temperature increases when the length of the heat exchanger is increased.
The correct answers are ,
A) C
B) N
C) Ti
D) Zn
E) Fe
F) Phosphorus
G)Calcium
H) Helium
I) Lead
J) Silver
<h3>How are elements named?</h3>
Elements have been given names based on a variety of factors, <u>including their characteristics</u>, the compound or ore from which they were extracted, the method by which they were found or acquired, mythical characters, locations, and well-known individuals. Some components have <u>names that are descriptive and are based on one of their attributes.</u>
The International Union of Pure and Applied Chemistry chooses the official element names and symbols (IUPAC). However, different nations frequently use similar names and symbols for elements. Official names and symbols for elements are not given until after their discovery has been confirmed. The discoverer may then suggest a name and a symbol.
There are name standards for several element groupings. Names of halogens end in -ine. All noble gas names, save helium, end in -on. The names of most other elements finish with -ium.
To learn more about elements:
brainly.com/question/14347616
#SPJ4
Radishes are a popular root vegetable known scientifically as Raphanus raphanistrum. Radishes come in a variety of colors, including black, red, purple, and white. They have been harvested for thousands of years.
If the concentration of water inside a cell is higher than the concentration of water outside a cell, osmosis will take place, as water will move from an area of low solute concentration inside the cell to higher solute concentration, outside the cell.