Mathematically, relation between force, area and pressure is given by...
Pressure = force / area
hence, pressure is directly proportional to force but inversely proportional to area.
Answer:
the reflected wave is inverted and the transmitted wave is up
Explanation:
To answer this question we must analyze the physical phenomenon, with an wave reaching a discontinuity, we can analyze it as a shock.
Let's start when the discontinuity is with a fixed, very heavy and rigid obstacle, in this case the reflected wave is inverted, since the contact point cannot move
In the event that it collides with an object that can move, the reflected wave is not inverted, this is because the point can rise, they form a maximum at this point.
In the proposed case the shock is when the thickness changes, in this case we have the above phenomena, a part of the wave is reflected by being inverted and a part of the wave is transmitted without inverting.
The amplitude sum of the amplitudes of the two waves is proportional to the lanería that is distributed between them.
When checking the answers the correct one is the reflected wave is inverted and the transmitted wave is up
Answer:An ellipse is a closed curve consisting of points whose distances from each of two fixed points (foci) all add up to the same value .
Explanation:
K is cation by losing of electron whereas Br is anion due to accepting of electrons.
<h3 /><h3>Is charge appears when an atom lose or accept electron?</h3>
Yes, the positive ion appears on K and become cation whereas the negative ion bears on Br which make it anion because of losing and gaining of electron by these atoms. This transferring of electrons leads to formation of ionic bonds between them.
So we can conclude that K is cation by losing of electron whereas Br is anion due to accepting of electrons.
Learn more about ionic bond here: brainly.com/question/2687188
#SPJ1
Density = (mass) divided by (volume)
We know the mass (2.5 g). We need to find the volume.
The penny is a very short cylinder.
The volume of a cylinder is (π · radius² · height).
The penny's radius is 1/2 of its diameter = 9.775 mm.
The 'height' of the cylinder is the penny's thickness = 1.55 mm.
Volume = (π) (9.775 mm)² (1.55 mm)
= (π) (95.55 mm²) (1.55 mm)
= (π) (148.1 mm³)
= 465.3 mm³
We know the volume now. So we could state the density of the penny,
but nobody will understand what we have. Here it is:
mass/volume = 2.5 g / 465.3 mm³ = 0.0054 g/mm³ .
Nobody every talks about density in units of ' gram/(millimeter)³ ' .
It's always ' gram / (centimeter)³ '.
So we have to convert our number for the volume.
(0.0054 g/mm³) x (10 mm / cm)³
= (0.0054 x 1,000) g/cm³
= 5.37 g/cm³ .
This isn't actually very close to what the US mint says for the density
of a penny, but it's in a much better ball park than 0.0054 was.