Answer:
ω, the angular frequency of the source equals 377 rad/s
Explanation:
From the question, V(t) = V cosωt.
Now, ω = the angular frequency of the sinusoidal wave is given by
ω = 2πf where f = the frequency of the source = 60 Hz
So, the angular frequency of the source ,ω = 2π × the frequency of the source.
So, ω = 2πf
ω = 2π × 60 Hz
ω = 120π rad/s
ω = 376.99 rad/s
ω ≅ 377 rad/s
So, ω, the angular frequency of the source equals 377 rad/s
Answer:
700 joules
Explanation:
potential energy = m × h × g
( m = mass, h = height, g = acceleration due to gravity )
- P.E = 14 × 5 × 10
- P.E = 700 J
hence, gravitational potential energy of the object is 700J
<em>i</em><em> </em><em>hope</em><em> </em><em>it</em><em> </em><em>helped</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em>
B the goose with most mass
this is because momentum=mass x acceleration
so a larger mass will give a larger momentum ( acceleration stays constant)
Answer:
The average drag force is 1.206 (-i) N
Explanation:
You have to apply the equations of<em> Impulse</em>:
I=FmedΔt
Where I and Fmed (the average force) are vectors.
The Impulse can also be expressed as the change in the <em>quantity of motion</em> (vector P)
I=P2-P1
P=mV (m is the mass and v is the velocity)
You can calculate the quantity of motion at the beggining and at the end of the given time:
Replace the mass in kg, dividing the mass by 1000 to convert it from g to kg.
P1=(0.179kg)(30.252m/s) i= 5.414 i kg.m/s
P2=0.179kg)(28.452m/s) i = 5.092 i kg. m/s
Where i is the unit vector in the x-direction.
Therefore:
I= 5.092 i - 5.414 i = -0.322 i
The average drag force is:
Fmed= I/Δt = -0.322 i/ 0.267s = -1.206 i N
B. Primary target market , because its a business ( you sell in a business ) and it says a certain group which would be a target.