1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
motikmotik
3 years ago
9

Explain how conduction, convection, and radiation occur involving a campfire

Physics
1 answer:
weqwewe [10]3 years ago
7 0

Answer:

https://wtamu.edu/~cbaird/sq/2015/02/26/when-i-sit-by-a-campfire-how-does-its-hot-air-heat-me/#:~:text=When%20you%20sit%20by%20a,It%20comes%20from%20thermal%20radiation.&text=Since%20air%20is%20a%20good,of%20pockets%20of%20heated%20fluid.

Here's a link to help you hope it helps have a good day

You might be interested in
A car is driving at 30 m/s it has a mass of 1800 kg what is the cars momentum?
Ostrovityanka [42]

Answer:

Explanation:

Momentum is a concept and is defined as,

Momentum = mass × velocity

So to calculate the momentum of the car

momentum of the car = mass of the car × velocity of the car

So we get,

momentum of the car = 1800 × 30

= 54000 Ns

5 0
3 years ago
Read 2 more answers
NEED HELP ASAP
Dafna11 [192]

Answers:

a) -2.54 m/s

b) -2351.25 J

Explanation:

This problem can be solved by the <u>Conservation of Momentum principle</u>, which establishes that the initial momentum p_{o} must be equal to the final momentum p_{f}:  

p_{o}=p_{f} (1)  

Where:  

p_{o}=m_{1} V_{o} + m_{2} U_{o} (2)  

p_{f}=(m_{1} + m_{2}) V_{f} (3)

m_{1}=110 kg is the mass of the first football player

V{o}=-7 m/s is the velocity of the first football player (to the south)

m_{2}=75 kg  is the mass of the second football player

U_{o}=4 m/s is the velocity of the second football player (to the north)

V_{f} is the final velocity of both football players

With this in mind, let's begin with the answers:

a) Velocity of the players just after the tackle

Substituting (2) and (3) in (1):

m_{1} V_{o} + m_{2} U_{o}=(m_{1} + m_{2}) V_{f} (4)  

Isolating V_{f}:

V_{f}=\frac{m_{1} V_{o} + m_{2} U_{o}}{m_{1} + m_{2}} (5)

V_{f}=\frac{(110 kg)(-7 m/s) + (75 kg) (4 m/s)}{110 kg + 75 kg} (6)

V_{f}=-2.54 m/s (7) The negative sign indicates the direction of the final velocity, to the south

b) Decrease in kinetic energy of the 110kg player

The change in Kinetic energy \Delta K is defined as:

\Delta K=\frac{1}{2} m_{1}V_{f}^{2} - \frac{1}{2} m_{1}V_{o}^{2} (8)

Simplifying:

\Delta K=\frac{1}{2} m_{1}(V_{f}^{2} - V_{o}^{2}) (9)

\Delta K=\frac{1}{2} 110 kg((-2.5 m/s)^{2} - (-7 m/s)^{2}) (10)

Finally:

\Delta K=-2351.25 J (10) Where the minus sign indicates the player's kinetic energy has decreased due to the perfectly inelastic collision

6 0
3 years ago
I WILL GIVE BRAINLIEST IF SOMEONE GETS THIS......
pav-90 [236]

Answer:

Explanation:

a)

Firstly to calculate the total mass of the can before the metal was lowered we need to add the mass of the eureka can and the mass of the water in the can. We don't know the mass of the water but we can easily find if we know the volume of the can. In order to calculate the volume we would have to multiply the area of the cross section by the height. So we do the following.

100cm^{2} x 10cm = 1000cm^{3}

Now in order to find the mass that water has in this case we have to multiply the water's density by the volume, and so we get....

\frac{1g}{cm^{3} } x 1000cm^{3} = 1000g or 1kg

Knowing this, we now can calculate the total mass of the can before the metal was lowered, by adding the mass of the water to the mass of the can. So we get....

1000g + 100g = 1100g or 1.1kg

b)

The volume of the water that over flowed will be equal to the volume of the metal piece (since when we add the metal piece, the metal piece will force out the same volume of water as itself, to understand this more deeply you can read the about "Archimedes principle"). Knowing this we just have to calculate the volume of the metal piece an that will be the answer. So this time in order to find volume we will have to divide the total mass of the metal piece by its density. So we get....

20g ÷ \frac{8g}{cm^{3} } = 2.5 cm^{3}

c)

Now to find out the total mass of the can after the metal piece was lowered we would have to add the mass of the can itself, mass of the water inside the can, and the mass of the metal piece. We know the mass of the can, and the metal piece but we don't know the mass of the water because when we lowered the metal piece some of the water overflowed, and as a result the mass of the water changed. So now we just have to find the mass of the water in the can keeping in mind the fact that 2.5cm^{3} overflowed. So now we the same process as in number a) just with a few adjustments.

\frac{1g}{cm^{3} } x (1000cm^{3} - 2.5cm^{3}) = 997.5g

So now that we know the mass of the water in the can after we added the metal piece we can add all the three masses together (the mass of the can. the mass of the water, and the mass of the metal piece) and get the answer.

100g + 997.5g + 20g = 1117.5g or 1.1175kg

5 0
3 years ago
How much work does this force do as the particle moves along the x-axis from x = 0 to x = l? express your answer in terms of the
nydimaria [60]
<h3><u>Answer</u>;</h3>

= F0 L ( 1 - 1/e )

<h3><u>Explanation;</u></h3>

Work done is given as the product of force and distance.

In this case;

Work done  = ∫︎ F(x) dx  

                    = F0 ∫︎ e^(-x/L) dx  

                    = F0 [ -L e^(-x/L) ] between 0 and L  

                    = F0 L ( 1 - 1/e )

3 0
3 years ago
What are parts of a pulley
PtichkaEL [24]
Wheel, axel and rope
3 0
3 years ago
Other questions:
  • PLZ HELP!!!!!!!
    9·2 answers
  • The vertical velocity?
    11·1 answer
  • The electric potential in a certain region is given by the equation V(x,y,z) = 3αx2y3 - 2γx2y4z2 where the potential is in volts
    11·1 answer
  • The charge on a gamma ray is ____.
    8·2 answers
  • Which configuration would produce an electric current? A) Rotate a coil of copper wire between two magnets. B) Connect a wire be
    14·2 answers
  • Calculate the mean free path of air molecules at a pressure of 7.00×10^−13 atm and a temperature of 303 K . (This pressure is re
    6·1 answer
  • A ray of white light moves through the air and strikes the surface of water in a beaker. The index of refraction of the water is
    5·1 answer
  • A 15-gram bullet moving at 1502 m/s plunges into 2.5 kg of paraffin wax. The wax was initially at 31°C. Assuming that all the bu
    9·1 answer
  • A man pushes a 10 kg box a distance of 5 m for 3 hours. How much work<br> did the man complete?*
    6·1 answer
  • An object's mass refers to _____ and an object's weight refers to _____. Fill in each blank.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!