1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mars1129 [50]
3 years ago
7

type 2 diabetes runs in familes, but its frequency has been rising in recent years. what factors might explain this increase in

type 2 diabetes?
Physics
1 answer:
FrozenT [24]3 years ago
8 0

Answer:

poor diet andlack of exersise

Explanation:

You might be interested in
3. A football is kicked with a speed of 35 m/s at an angle of 40°.
jarptica [38.1K]

a) 22.5 m/s

The initial vertical velocity is given by:

u_y = u sin \theta

where

u = 35 m/s is the initial speed

\theta=40^{\circ} is the angle of projection of the ball

Substituting into the equation, we find

u_y = (35)(sin 40)=22.5 m/s

b) 26.8 m/s

The initial horizontal velocity is given by:

u_x = u cos \theta

where

u = 35 m/s is the initial speed

\theta=40^{\circ} is the angle of projection of the ball

Substituting into the equation, we find

u_x = (35)(cos 40)=26.8 m/s

c) 2.30 s

The time it takes for the ball to reach the maximum heigth can be found by considering the vertical motion only. This is a uniformly accelerated motion (free-fall), so we can use the suvat equation

v_y = u_y + at

where

v_y is the vertical velocity at time t

u_y = 22.5 m/s

a=g=-9.8 m/s^2 is the acceleration of gravity (negative because it is downward)

At the maximum height, the vertical velocity becomes zero, v_y =0; substituting, we find the time t at which this happens:

0=u_y + gt\\t=-\frac{u_y}{g}=-\frac{22.5}{-9.8}=2.30 s

d) 25.8 m

The maximum height can also be found by considering the vertical motion only. We can use the following suvat equation:

s=u_y t + \frac{1}{2}gt^2

where

s is the vertical displacement at time t

u_y = 22.5 m/s

g=-9.8 m/s^2

Substituting t = 2.30 s, we find the displacement at maximum height, so the maximum height:

s=(22.5)(2.30)+\frac{1}{2}(-9.8)(2.30)^2=25.8 m

e) 123.3 m

In order to find how far does the ball lands, we have to consider the horizontal motion.

First of all, the time it takes for the ball to go back to the ground is twice the time needed for reaching the maximum height:

t=2(2.30 s)=4.60 s

Then, we consider the horizontal motion. There is no acceleration along this direction, so the horizontal velocity is constant:

v_x = 26.8 m/s

Therefore, the horizontal distance travelled during the whole motion is

d=v_x t = (26.8)(4.60)=123.3 m

So, the ball lands 123.3 m far from the initial point.

4 0
3 years ago
Clouds, wind, and rain are part of the _____.
Musya8 [376]
A its Stratosphere, Sorry I didn't see your answer, its bilogy I think not physics.. :)
8 0
3 years ago
A laser beam with a frequency of 180 Hz forms an 8 m standing wave with 10 nodes.
DIA [1.3K]

Answer:33

Explanation:

F = frequency

N =  Node count

w = wave lenght

v = wave velocity

L = distance wave traveled

First find wave length of laser

w = (2/(N))*(L)

w = (2/(10))*(8)

w = 1.6

then using (w), find velocity

V =  (w)(F)

V = (1.6)*(108)

V = 288

Plug in V and the new frequency to solve for new node count

F = NV/2L

(600) = (N)*(288) / 2 * (8)

(N) = 33.33

there are 33 nodes

8 0
3 years ago
A particle with charge − 2.74 × 10 − 6 C −2.74×10−6 C is released at rest in a region of constant, uniform electric field. Assum
s2008m [1.1K]

Answer:

241.7 s

Explanation:

We are given that

Charge of particle=q=-2.74\times 10^{-6} C

Kinetic energy of particle=K_E=6.65\times 10^{-10} J

Initial time=t_1=6.36 s

Final potential difference=V_2=0.351 V

We have to find the time t after that the particle is released and traveled through a potential difference 0.351 V.

We know that

qV=K.E

Using the formula

2.74\times 10^{-6}V_1=6.65\times 10^{-10} J

V_1=\frac{6.65\times 10^{-10}}{2.74\times 10^{-6}}=2.43\times 10^{-4} V

Initial voltage=V_1=2.43\times 10^{-4} V

\frac{\initial\;voltage}{final\;voltage}=(\frac{initial\;time}{final\;time})^2

Using the formula

\frac{V_1}{V_2}=(\frac{6.36}{t})^2

\frac{2.43\times 10^{-4}}{0.351}=\frac{(6.36)^2}{t^2}

t^2=\frac{(6.36)^2\times 0.351}{2.43\times 10^{-4}}

t=\sqrt{\frac{(6.36)^2\times 0.351}{2.43\times 10^{-4}}}

t=241.7 s

Hence, after 241.7 s the particle is released has it traveled through a potential difference of 0.351 V.

6 0
3 years ago
A 120 resistor a 60 ohm resistor and a 40 ohm resistor are connected in parallel to a 120 volt power source. what is the current
larisa [96]

Answer:

6 A

Explanation:

First of all, we need to calculate the equivalent resistance of the circuit. The three resistors are connected in parallel, so their equivalent resistance is given by:

\frac{1}{R_T}=\frac{1}{R_1}+\frac{1}{R_2}+\frac{1}{R_3}=\frac{1}{120 \Omega}+\frac{1}{60 \Omega}+\frac{1}{40 \Omega}=\frac{3+2+1}{120 \Omega}=\frac{6}{120 \Omega}\\R_T = \frac{120}{6} \Omega

And now we can use Ohm's law to find the current in the circuit:

V=R_T II=\frac{V}{R_T}=\frac{120 V}{\frac{120}{6}\Omega}=6 A

6 0
3 years ago
Other questions:
  • According to the _______ the amount of energy in the universe doesn't change.
    12·2 answers
  • What percentage of the mass of the solar nebula consisted of elements other than hydrogen and helium?
    13·2 answers
  • A boy can swim 3.0 meter a second in still water while trying to swim directly across a river from west to east, he is pulled by
    15·1 answer
  • What factors would change the force of friction?​
    8·1 answer
  • One light-hour is the distance that light travels in an hour. How far is this, in kilometers? (Recall that the speed of light is
    10·1 answer
  • The earth is composed of four layers three of these layers are solid and only one is liquid which layer exits in the liquid stat
    11·2 answers
  • If a ball is thrown straight up, where is its acceleration the<br> greatest
    15·1 answer
  • How does 10 organ systems contributes your arrival?
    12·1 answer
  • A student applies a force of 245 N to move a bicycle 12.0 meters. How much work is done on the bicycle
    9·1 answer
  • If a FM radio station broadcasts at 80. 3 MHz (megahertz), what is its wavelength in m (speed of light 3. 0 x 108 m/s)
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!