Answer:
The displacement reactions are regarded as redox reactions because they involve the formal transfer of electrons from one chemical specie to the other
2) The series of reactivity of the metals in the order of increasing reactivity are;
↓
↓
Explanation:
1) Redox (oxidation-reduction) reaction is a chemical reaction involving the loss and gain of electrons from one chemical species to another, where the chemical species that undergoes oxidation, loses electrons and is termed the reducing agent, while the other chemical species that undergoes reduction, gains electrons, and is termed the oxidizing agent
2) The redox reaction can being based on the affinity for electrons depends on the positions of the reactants in the electrochemical series as well as the chemical reactivity of the metals with zinc being a stronger reducing agent and more chemically reactive than copper and magnesium being a stronger reducing agent and more chemically reactive than zinc
Least reactive (Cu) < (Zn) < Mg Most reactive
Copper < Zinc < Magnesium.
Answer:
Bonds are polar when one element in a compound is more electronegative than the other. This creates a dipole in the molecule where one end of the molecule is partially positive and one end is partially negative
Explanation:
Answer:
(2) Organelles must work together and their
activities must be coordinated
Explanation:
Organelles are usually located in cells. They are saddled with the role of performing specific functions in the cells for the overall functioning of life. In eukaryotic cells, the organelles are membrane bounded but in prokaryotic or primitive cells such is not the case.
Examples of cell organelles are ribosome, food vacuole, nucleus e.t.c. Just like organs in the body, organelles must work together in order to enhance life.
(a) Iron (iii) sulphate:
From the periodic table:
mass of iron = 55.845 grams
mass of sulphur = 32.065 grams
mass of oxygen = 16 grams
Iron (iii) sulphate has the formula: Fe2(SO4)3
molar mass = 2(55.845) + 3(32.065) + 3(4)(16) = 399.885 grams
(b) Sodium hydroxide:
From the periodic table:
mass of sodium = 22.989 grams
mass of oxygen = 16 grams
mass of hydrogen = 1 gram
Sodium hydroxide has the formula: NaOH
molar mass = 22.989 + 16 + 1 = 39.989 grams
(c) Barium carbonate
From the periodic table:
mass of barium = 137.327 grams
mass of carbon = 12 grams
mass of oxygen = 16 grams
Barium carbonate has the formula: BaCO3
molar mass = 137.327 + 12 + 3(16) = 197.327 grams
(d) ammonium nitrate:
From the periodic table:
mass of nitrogen = 14 grams
mass of hydrogen = 1 gram
mass of oxygen = 16 grams
Ammonium nitrate has the formula: NH4NO3
molar mass = 14 + 4(1) + 14 + 3(16) = 80 grams
(e) Lead (iv) oxide
From the periodic table:
mass of lead = 207.2 grams
mass of oxygen = 16 grams
Lead (iv) oxide has the formula: PbO2
molar mass = 207.2 + 2(16) = 239.2 grams
From the above calculations, we can see that:
Iron (iii) sulphate has the greatest mass.
Answer:
This is because, Kelvins and Celcius degrees both agree at fixed points i.e; the lower fixed point and upper