Answer:
The final volume will be "70.08 mL".
Explanation:
The given values are:
Molar mass,
M1 = 548 nM
or,
= 
M2 = 484 nM
or,
=
Volume,
V1 = 61.9 mL
V1 = ?
By using the expression, we get
⇒ 
or,
⇒ 
By substituting the values, we get



Answer:
2 Atm; 2.016 g
Explanation:
Changing the volume without changing the temperature or mass only changes the pressure. Volume and pressure are inversely proportional so halving the volume will double the pressure.
P = 1 Atm, T = 0 °C are "standard" temperature and pressure (STP). The volume of 1 mole of gas is 22.4 L under these conditions. That means the amount of hydrogen gas in the cylinder is 1 mole, so has a mass of 2.016 g.
After the volume reduction, the pressure is 2 Atm, and the mass remains 2.016 g.
They use sequencing technology
Answer:
In solid state all the atoms and molecules are held very closely together by strong attractive forces.
Explanation:
Solids have definite volume and shape.
In solids molecules are tightly pack and very close to each other.
Their melting and boiling point are every high.
The densities of solids are also very high as compared to the liquid and gas.
There are very strong inter molecular forces are present between solid molecules.
Consider the example of water. Which is present in three state solid, liquid and gas. In the form of ice its volume is less as compared to the liquid and gas, because molecules are tightly packed. If we melt the same ice we observe the volume is increase because molecules are now apart from each other. The distance between the molecules of water increased. If the same amount of water is evaporated the molecule of water will occupy all available space , and the distance between the water molecules get increased and inter molecular forces becomes negligible.
Answer:
Three primary reasons. First, there is simply more water-covered places than dry ground places for the animals and plants to have lived. Second, the seas are much more crowded with the kinds of life that leave fossils than the land is. Third, the process that form fossils work very well under water.
Explanation: