You have to find what x equals i think
R=21. 21/3=7. To check your answer, you can do 7x3 and it'll equal 21.
2. 8x -28 = -140
8x -28 + 28 = -140 + 28
8x = -112
8x/8 = -112/8
x = -14
3. -9 + x/3 = -23
-9 + 9 + x/3 = -23 + 9
x/3 = -14
x/3/3 = -14/3
x = -14/3
4. x/-1.5 - 3.5 = -13.5
x/-1.5 - 3.5 + 3.5 = -13.5 + 3.5
x/1.5 = -10
x/-1.5/-1.5= -10/-1.5
x = 20/3
5.-6(x + 3) = -36
-6x - 18 = -36
-6x - 18 + 18 = -36 + 18
-6x = -18
-6x/-6 = -18/-6
x = 3
6. k + 3.7/9.8 = -0.22
k + 3.7/9.8/9.8 = -0.22/9.8
k + 3.7 = -2.156
k + 3.7 - 3.7 = -2.156 - 3.7
k = -5.856
7. 12(x - 6) = -108
12x - 72 = -108
12x - 72 + 72 = -108 + 72
12x = -36
12x/12 = -36/12
x = -3
8. -21.83x - -19.9 = -23.83
-21.83x + 19.9 = -23.83
-21.83x + 19.9 - 19.9 = -23.83 - 19.9
-21.83x = -43.73
-21.83x/-21.83 = -43.73/-21.83
x = 2
9. -10x - 68 + x = 40
-9x - 68 = 40
-9x -68 + 68 = 40 + 68
-9x = 108
-9x/-9 = 108/-9
x = -12
10. -34 - 3x - 2x = 71
-34 - 5x = 71
-34 + 34 - 5x = 71 + 34
-5x = 105
-5x/-5 = 105/-5
x = -21
11. 3x - 77 - 8x = 23
-5x - 77 = 23
-5x - 77 + 77 = 23 + 77
-5x = 100
-5x/-5 = 100/-5
x = -20
12. 3x - 5(2x - 12) = 123
3x - 10x + 60 = 123
-7x + 60 = 123
-7x + 60 - 60 = 123 - 60
-7x = 63
-7x/-7 = 63/-7
x = -9
13. -3x + 6(x + 6) = 15
-3x + 6x + 36 = 15
3x + 36 = 15
3x + 36 - 36 = 15 - 36
3x = -21
3x /3 = -21/3
x = -7
14. 5x + 2(4x - 9) = -174
5x + 8x - 18 = -174
13x - 18 = -174
13x - 18 + 18 = -174 + 18
13x = -156
13x/13 = -156/13
x = -12
15. -3x + 6(5x + 3) = -171
-3x + 30x + 18 = -171
27x + 18 = -171
27x + 18 - 18 = -171 - 18
27x = -189
27x/27 = -189/27
x = -7
Answer:
$15.50
Step-by-step explanation:
0.5 (1) + 5 (3)
0.5 + 15
15.50
<u>Given</u><u> info</u><u>:</u><u>-</u> In triangle (∆)ABC , in which ∠A = 2x, ∠B = x+15° and ∠C = 2x + 10°. Then find the value of x , also find the measure of each angles of a triangle.
<u>Explanation</u><u>:</u><u>-</u>
Let the angles be 2x, x+15 and 2x+10 respectively.
∵ Sum of the three angles of a triangle is 180°
∴ ∠A + ∠B + ∠C = 180° [Sum of ∠s of a ∆=180°]
→2x + x+15 + 2x+10 = 180°
→ 2x + x + 2x + 15 + 10 = 180°
→ 3x + 2x + 15 + 10 = 180°
→ 5x + 15 + 10 = 180°
→ 5x + 25 = 180°
→ 5x = 180°-25
→ 5x = 155°
→ x = 155°÷5 = 155/5 = 31.
Now, finding the measure of each angles of a ∆ABC by putting the original value of “x”.
∴ ∠A = 2x = 2(31) = 62°
∠B = x+15 = 31 + 15 = 46°
∠C = 2x + 10 = 2(31) + 10 = 62 + 10 = 72°.