Given :
Mass of block , M = 20 kg .
Force applied , F = 80 N .
Acceleration of block ,
.
To Find :
The coefficient is Kinetic force friction between the block and the table .
Solution :
We know , Force equation on block is given by :

Therefore , coefficient is Kinetic force friction between the block and the table is 0.15 .
Hence , this is the required solution .
Answer:
The velocity of the camera is 33.11 m/s.
Explanation:
Given that,
Speed = 10.8 m/s
Altitude = 50 m
Suppose determine the velocity of the camera just before it hits the ground?
We need to calculate the velocity of the camera
Using equation of motion

Where, v = final velocity of camera
u = initial speed of camera
s = distance
Put the value into the formula



The direction will be downward so it is the negative velocity.
Hence, The velocity of the camera is 33.11 m/s.
The relationship between the initial velocity, final velociy, distance, and deceleration can be expressed in the following equation.
2(a)(0.270 m) = 0² - (5.70 m/s)²
The value of a (which is the deceleration) is 0.06 m/s². Thus, the answer is that the deceleration value is approximately 0.06 m/s².
When you hit a hammer on the head of a nail, all the momentum associated with hammer is transferred into nail. And due to this, the surface of nail gets deformed or if you touch it you can feel the rise in temperature. When you hit a hammer on nail, hammer exerts force on nail and by Newton's 3rd law, nail will also exert a force on the hammer perpendicular to the surface of the hammer of same magnitude but its direction will be reversed. Thus, only 2 forces acts in this interaction and they are action-reaction pairs.
Answer:
= 285 Joules
Explanation:
a) answer can be found out in attachment
(b) The temperature for the isothermal compression is the same as the temp at the end of the isobaric expansion. Since pressure is held constant but volume doubles, we use the ideal gas law:
p V = nR T to see that the temperature also doubles.
.So... temp for isothermal compression = 355×2 = 710 K
.(c) The max pressure occurs at the top point. At this point, the volume is back to the original value but the temperature is twice the original value. So the pressure at this point is twice the original, or
max pressure = 2×240000 Pa = 480000 Pa = 4.80 x 10^5 Pa
(d) total work done by the piston = workdone during isothermal compression - work done during expansion =
= nRT ln(V initial / V final)-p (V initial - V final)
= nRT ln(2) - nR(T final - T initial)
= 0.250× 8.314 ×710×ln(2)-0.250×8.314× (710 - 355)
= 285 Joules