The system's tension is 616 N and acceleration is 5.6 
<u>Explanation:</u>
From newton’s second law of motion which state that net force acting on a body is product of mass of a body and acceleration of a body which is given as,

Where,
is net force acting on body
is mass of body
a is acceleration of body
Given values
Table mass (m) = 30 kg
Hanging mass (m) = 40 kg

Put the value for m = hanging mass = 40 kg and
, we get

The tension in the ropes, 
Here, m as hanging mass
T = tension, N or 
m = mass, kg
g = gravitational force, 
a = acceleration, 

Answer: The 1st one is B. I'm pretty sure the 2nd one is A. and the 3rd one is D.
Explanation: I hope this helped, although I'm not sure for the second one
Answer:
Explanation:
In the calculation of distance we do not take into account the direction of movement .So only magnitude of movement is taken care of.
On the other hand , in respect of displacement , we take into account even direction of movement along with magnitude.
Distance covered by flea = 45 - 27 = 18 cm
Displacement by flea = 27 - 45 = - 18 cm
Speed = Distance covered / time
= 18 / 3 = 6 cm / s
Velocity = - 18 / 3 = - 6 cm /s.
Answer:
v₁ = 3.5 m/s
v₂ = 6.4 m/s
Explanation:
We have the following data:
m₁ = mass of trailing car = 400 kg
m₂ = mass of leading car = 400 kg
u₁ = initial speed of trailing car = 6.4 m/s
u₂ = initial speed of leading car = 3.5 m/s
v₁ = final speed of trailing car = ?
v₂ = final speed of leading car = ?
The final speed of the leading car is given by the following formula:

<u>v₂ = 6.4 m/s</u>
The final speed of the leading car is given by the following formula:

<u>v₁ = 3.5 m/s</u>