1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
viva [34]
3 years ago
12

Rosa uses the formula (vi cos)t to do a calculation. Which value is Rosa most likely trying to find?

Physics
2 answers:
Llana [10]3 years ago
8 0

Answer;

C - the horizontal displacement of a projectile launched at an angle

Explanation;

-The horizontal displacement of a projectile is only influenced by the speed at which it moves horizontally (vix) and the amount of time (t) that it has been moving horizontally.

-The range (or horizontal displacement) will increase as the angle is increased from 0 degrees to 45 degrees. The maximum range occurs at 45 degrees. As the angle is further increased to values greater than 45 degrees, the horizontal displacement decreases.

kaheart [24]3 years ago
6 0
The best and most correct answer among the choices provided by the question is <span>the horizontal component acceleration of a projectile launched at an angle </span>
I hope my answer has come to your help. God bless and have a nice day ahead!
You might be interested in
A 392 N wheel comes off a moving truck and rolls without slipping along a highway. At the bottom of a hill it is rotating at 24
alex41 [277]

Answer:

h=12.41m

Explanation:

N=392

r=0.6m

w=24 rad/s

I=0.8*m*r^{2}

So the weight of the wheel is the force N divide on the gravity and also can find momentum of inertia to determine the kinetic energy at motion

N=m*g\\m=\frac{N}{g}\\m=\frac{392N}{9.8\frac{m}{s^{2}}}

m=40kg

moment of inertia

M_{I}=0.8*40.0kg*(0.6m} )^{2}\\M_{I}=11.5 kg*m^{2}

Kinetic energy of the rotation motion

K_{r}=\frac{1}{2}*I*W^{2}\\K_{r}=\frac{1}{2}*11.52kg*m^{2}*(24\frac{rad}{s})^{2}\\K_{r}=3317.76J

Kinetic energy translational

K_{t}=\frac{1}{2}*m*v^{2}\\v=w*r\\v=24rad/s*0.6m=14.4 \frac{m}{s}\\K_{t}=\frac{1}{2}*40kg*(14.4\frac{m}{s})^{2}\\K_{t}=4147.2J

Total kinetic energy  

K=3317.79J+4147.2J\\K=7464.99J

Now the work done by the friction is acting at the motion so the kinetic energy and the work of motion give the potential work so there we can find height

K-W=E_{p}\\7464.99-2600J=m*g*h\\4864.99J=m*g*h\\h=\frac{4864.99J}{m*g}\\h=\frac{4864.99J}{392N}\\h=12.41m

6 0
3 years ago
A firecracker breaks up into two pieces , one has a mass of 200 g and files off along the x –axis with a speed of 82.0 m/s and t
Readme [11.4K]

Answer:

A) 21.2 kg.m/s at 39.5 degrees from the x-axis

Explanation:

Mass of the smaller piece = 200g = 200/1000 = 0.2 kg

Mass of the bigger piece = 300g = 300/1000 = 0.3 kg

Velocity of the small piece = 82 m/s

Velocity of the bigger piece = 45 m/s

Final momentum of smaller piece = 0.2 × 82 = 16.4 kg.m/s

Final momentum of bigger piece = 0.3 × 45 = 13.5 kg.m/s

since they acted at 90oc to each other (x and y axis) and also momentum is vector quantity; then we can use Pythagoras theorems

Resultant momentum² = 16.4² + 13.5² = 451.21

Resultant momentum = √451.21 = 21.2 kg.m/s at angle 39.5 degrees to the x-axis  ( tan^-1 (13.5 / 16.4)

5 0
3 years ago
A tennis ball is a hollow sphere with a thin wall. It is set rolling without slipping at 4.03 m/s on the horizontal section of a
seraphim [82]

Answer:

2.38 m/s, 4.31 m/s, lower

Explanation:

a)

Initial energy = final energy

½ m v₀² + ½ I ω₀² = mgh + ½ m v₁² + ½ I ω₁²

Since the ball is rolling without slipping, ω = v / r.

For a hollow sphere, I = ⅔ m r².

½ m v₀² + ½ (⅔ m r²) (v₀ / r)² = mgh + ½ m v₁² + ½ (⅔ m r²) (v₁ / r)²

½ m v₀² + ⅓ m v₀² = mgh + ½ m v₁² + ⅓ m v₁²

⅚ m v₀² = mgh + ⅚ m v₁²

⅚ v₀² = gh + ⅚ v₁²

v₀² = 1.2gh + v₁²

v₁ = √(v₀² − 1.2gh)

Given v₀ = 4.03 m/s, g = 9.80 m/s, h = 0.900 m:

v₁ = √((4.03)² − 1.2 (9.80) (0.900))

v₁ ≈ 2.38 m/s

At the top of the loop, the sum of the forces in the radial direction is:

∑F = ma

W + N = m v² / R

N = m v² / R - mg

N = m (v² / R - g)

Given v = 2.38 m/s, R = 0.450 m, and g = 9.80 m/s²:

N = m ((2.38)² / 0.450 - 9.80)

N = 2.77m

N ≥ 0, so the ball stays on the track.

b)

Initial energy = final energy

Borrowing from part a):

v₂ = √(v₀² − 1.2gh)

This time, h = -0.200 m:

v₂ = √((4.03)² − 1.2 (9.80) (-0.200))

v₂ ≈ 4.31 m/s

c)

Without the rotational energy:

½ m v₀² = mgh + ½ m v₁²

½ v₀² = gh + ½ v₁²

v₀² = 2gh + v₁²

v₁ = √(v₀² - 2gh)

This is less than v₁ we calculated earlier.

6 0
3 years ago
A bar of length L = 8 ft and midpoint D is falling so that, when θ = 27°, ∣∣v→D∣∣=18.5 ft/s , and the vertical acceleration of p
777dan777 [17]

Answer:

alpha=53.56rad/s

a=5784rad/s^2

Explanation:

First of all, we have to compute the time in which point D has a velocity of v=23ft/s (v0=0ft/s)

v=v_0+at\\\\t=\frac{v}{a}=\frac{(23\frac{ft}{s})}{32.17\frac{ft}{s^2}}=0.71s

Now, we can calculate the angular acceleration  (w0=0rad/s)

\theta=\omega_0t +\frac{1}{2}\alpha t^2\\\alpha=\frac{2\theta}{t^2}

\alpha=\frac{27}{(0.71s)^2}=53.56\frac{rad}{s^2}

with this value we can compute the angular velocity

\omega=\omega_0+\alpha t\\\omega = (53.56\frac{rad}{s^2})(0.71s)=38.02\frac{rad}{s}

and the tangential velocity of point B, and then the acceleration of point B:

v_t=\omega r=(38.02\frac{rad}{s})(4)=152.11\frac{ft}{s}\\a_t=\frac{v_t^2}{r}=\frac{(152.11\frac{ft}{s})^2}{4ft}=5784\frac{rad}{s^2}

hope this helps!!

6 0
3 years ago
Read 2 more answers
The velocity of a mass moving in a circular path is..
Alenkasestr [34]
Constantly changing.
5 0
3 years ago
Other questions:
  • Express the number in scientific notation: -8,675,300.0
    15·1 answer
  • What are some properties of transverse waves?
    13·1 answer
  • When a potassium atom forms an ion, it loses one electron. What is the electrical charge of the potassium ion?
    12·2 answers
  • Two narrow slits 0.02 mm apart are illuminated by light from a CuAr laser (λ = 633 nm) onto a screen. a) If the first fringe is
    11·1 answer
  • Identify the parts of the wave below. Please help! I need it quite soon!
    14·1 answer
  • Ball 1 is thrown to the ground with an initial downward speed; ball 2 is dropped to the ground from rest.
    9·1 answer
  • What type of reaction is shown in the following chemical equation: 2H2O → 2H2 + O2?
    7·2 answers
  • A heavy hall with a mass of 3.5 kg is observed to accelerate
    10·1 answer
  • Basketball player Darrell Griffith is on record as
    8·1 answer
  • 2. Two spherical objects with radii 1 m have masses of 1.5 kg and 8.5 kg. They are separated by a
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!