The answer its O-H.........
The solids are characterized as amorphous and crystalline solids based on the arrangement of atoms. The solids that are amorphous are rubber, plastic, candle wax, and glass.
<h3>What are amorphous solids?</h3>
The solids have the arrangement of atoms in the lattice. The solids with an appropriate arrangement of atoms are crystalline solids. For example, sugar, graphite.
The solids with irregular arrangements of atoms in the lattice are amorphous solids. For example, glass, rubber.
Thus, the solids that are amorphous in nature are rubber, plastic, candle wax, and glass.
Learn more about amorphous solids, here:
brainly.com/question/4626187
Answer:
A closed system is a physical system that does not allow transfer of matter in or out of the system, though, in different contexts, such as physics, chemistry or engineering, the transfer of energy is or is not allowed.
Explanation:
Considering the definition of percentage by mass, the mass percentage of CaCO₃ is 68.59%.
<h3>What is mass percentage</h3>
The percentage by mass expresses the concentration and indicates the amount of mass of solute present in 100 grams of solution.
In other words, the percentage by mass of a component of the solution is defined as the ratio of the mass of the solute to the mass of the solution, expressed as a percentage.
The percentage by mass is calculated as the mass of the solute divided by the mass of the solution, the result of which is multiplied by 100 to give a percentage. This is:

<h3>Mass percentage of CaCO₃</h3>
In this case, you know:
- mass of CaCO₃: 2.62 grams
- mass of limestone: 3.82 grams
Replacing in the definition of mass percentage:

<u><em>mass percentage= 68.59 %</em></u>
Finally, the mass percentage of CaCO₃ is 68.59%.
Learn more about percentage by mass:
brainly.com/question/24201923
brainly.com/question/9779410
brainly.com/question/17030163
#SPJ1
Answer:
As the kinetic energy of the gaseous solute increases, its molecules have a greater tendency to escape the attraction of the solvent molecules and return to the gas phase. Therefore, the solubility of a gas decreases as the temperature increases.
Explanation:
As the kinetic energy of the gaseous solute increases, its molecules have a greater tendency to escape the attraction of the solvent molecules and return to the gas phase. Therefore, the solubility of a gas decreases as the temperature increases