<span>1.16 moles/liter
The equation for freezing point depression in an ideal solution is
ΔTF = KF * b * i
where
ΔTF = depression in freezing point, defined as TF (pure) ⒠TF (solution). So in this case ΔTF = 2.15
KF = cryoscopic constant of the solvent (given as 1.86 âc/m)
b = molality of solute
i = van 't Hoff factor (number of ions of solute produced per molecule of solute). For glucose, that will be 1.
Solving for b, we get
ΔTF = KF * b * i
ΔTF/KF = b * i
ΔTF/(KF*i) = b
And substuting known values.
ΔTF/(KF*i) = b
2.15âc/(1.86âc/m * 1) = b
2.15/(1.86 1/m) = b
1.155913978 m = b
So the molarity of the solution is 1.16 moles/liter to 3 significant figures.</span>
Answer:
A substance that is composed only of atoms having the same atomic number is ... 36 grams of an unknown liquid at its boiling point,.
Answer:
In engineering and science the common stand is two places.
For example if you get a calculation of 4.567 round up and give the result of 4.57
Answer:
Actually, one of the more interesting organisms at those depths is the Xenophyophore, a creature which, despite being single-celled, can grow to be over 10 centimeters wide. "Scientists say xenophyophores are the largest individual cells in existence.
Explanation: