Answer: 27.09 ppm and 0.003 %.
First, <u>for air pollutants, ppm refers to parts of steam or gas per million parts of contaminated air, which can be expressed as cm³ / m³. </u>Therefore, we must find the volume of CO that represents 35 mg of this gas at a temperature of -30 ° C and a pressure of 0.92 atm.
Note: we consider 35 mg since this is the acceptable hourly average concentration of CO per cubic meter m³ of contaminated air established in the "National Ambient Air Quality Objectives". The volume of these 35 mg of gas will change according to the atmospheric conditions in which they are.
So, according to the <em>law of ideal gases,</em>
PV = nRT
where P, V, n and T are the pressure, volume, moles and temperature of the gas in question while R is the constant gas (0.082057 atm L / mol K)
The moles of CO will be,
n = 35 mg x
x
→ n = 0.00125 mol
We clear V from the equation and substitute P = 0.92 atm and
T = -30 ° C + 273.15 K = 243.15 K
V = 
→ V = 0.0271 L
As 1000 cm³ = 1 L then,
V = 0.0271 L x
= 27.09 cm³
<u>Then the acceptable concentration </u><u>c</u><u> of CO in ppm is,</u>
c = 27 cm³ / m³ = 27 ppm
<u>To express this concentration in percent by volume </u>we must consider that 1 000 000 cm³ = 1 m³ to convert 27.09 cm³ in m³ and multiply the result by 100%:
c = 27.09
x
x 100%
c = 0.003 %
So, <u>the acceptable concentration of CO if the temperature is -30 °C and pressure is 0.92 atm in ppm and as a percent by volume is </u>27.09 ppm and 0.003 %.
Temperature is a statistical quantity. The formal definition<span> is T = dU/dS, the change in internal </span>energy<span> with respect to entropy holding volume and particle number constant. A practical </span>definition<span> comes from the fact that the atoms, molecules, or whatever particles in a system have an </span>average kinetic energy<span>.</span>
Answer: Elements in the same column are similar in their properties
Explanation: The columns on the periodic table are also know as group of the periodic table elements in the same group of the periodic table tends to have similar chemical properties because they all have the same number of valence electrons in their outermost shell. This plays an important roles in their reactivity and properties
Answer:
The answer to your question is given below
Explanation:
The balanced equation for the reaction is given below:
CaO(s) + CH4(g) + 2H2O(g) <=> CaCO3(s) + 4H2(g)
1. Writing an expression for the equilibrium constant, K.
The equilibrium constant, K for a reaction is simply the ratio of the concentration of the products raised to their coefficient to the concentration of the reactants raised to their coefficient.
Thus, we can write the equilibrium constant, K for the reaction as follow:
CaO(s) + CH4(g) + 2H2O(g) <=> CaCO3(s) + 4H2(g)
K = [CaCO3] [H2]⁴ / [CaO] [CH4] [H2O]²
2. Based on the value of K, more products will be in the equilibrium mixture since the value of K is a positive large number.