Answer:
A C
Explanation:
The statement of the exercise is a bit strange, but if the distance between the load increases.
The following phenomena must occur.
* If the charge has a spatial distribution, the electric field should reduce the electric field of a point charge at the same distance
* As the distance increases the value of the electric field decreases in quadratic form
therefore when reviewing the correct answers are
if the total load is q, answer A is correct
and answer C is always correc
Answer:
The small pebble
Explanation:
Since the potential energy, P.E lost equals kinetic energy, K.E gained,
P.E = K.E
P.E = mgh = K.E
So, K.E = mgh where g = acceleration due to gravity and h = height of drop
Since h and g are constant
K.E ∝ m
So, the kinetic energy of the object is directly proportional to its mass. Thus, the object with the smaller mass has the lesser kinetic energy.
Since the object with the smaller mass is the small pebble, so the small pebble would have less kinetic energy as it crashes on the road at the bottom of the mountain.
Answer:
983.400345675 hits per second
Explanation:
Radius = 14.2 cm
Record turn rate = 33 rev/min
Bump separation = 0.499 mm
Circumference of the record = 
Number of bumps in the groove = 
The rate which the bumps hit the stylus = 
The rate at which the bumps hit the stylus 983.400345675 hits per second
Answer:

Explanation:
Given,
Width of slit, W = 5.7 x 10⁻⁴ m
Distance between central bright fringe, L = 4 m
distance between central bright fringe and first dark fringe, y = 4 mm
Diffraction angle



Now.

m = 1


