1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lakkis [162]
2 years ago
10

Find the mass of a 4 N stone.

Physics
1 answer:
nikitadnepr [17]2 years ago
6 0

Answer:

F=ma

4=m(9.8)

m=2.45kg

You might be interested in
Very large accelerations can injure the body, especially if they last for a considerable length of time. The severity index (SI)
Ludmilka [50]

Answer:

a) The severity index (SI) is 3047.749, b) The injured travels 0.345 meters during the collision.

Explanation:

a) The g-multiple of the acceleration, that is, a ratio of the person's acceleration to gravitational acceleration, is:

a' = \frac{35\,\frac{m}{s^{2}} }{9.807\,\frac{m}{s^{2}} }

a' = 3.569

The time taken for the injured to accelerate to final speed is given by this formula under the assumption of constant acceleration:

v_{f} = v_{o} + a \cdot t

Where:

v_{o} - Initial speed, measured in meters per second.

v_{f} - Final speed, measured in meter per second.

a - Acceleration, measured in \frac{m}{s^{2}}.

t - Time, measured in seconds.

t = \frac{v_{f}-v_{o}}{a}

t = \frac{\left(12\,\frac{km}{h} \right)\cdot \left(1000\,\frac{m}{km} \right)\cdot \left(\frac{1}{3600}\,\frac{h}{s}  \right)}{35\,\frac{m}{s^{2}} }

t = 0.095\,s

Lastly, the severity index is now determined:

SI = \frac{a'^{5}}{2\cdot t}

SI = \frac{3.569^{5}}{2\cdot (0.095\,s)}

SI = 3047.749

b) The initial and final speed of the injured are 1.944\,\frac{m}{s} and 5.278\,\frac{m}{s}, respectively. The travelled distance can be determined from this equation of motion:

v_{f}^{2} = v_{o}^{2} + 2\cdot a \cdot \Delta s

Where \Delta s is the travelled distance, measured in meters.

\Delta s = \frac{v_{f}^{2}-v_{o}^{2}}{2\cdot a}

\Delta s = \frac{\left(5.278\,\frac{m}{s} \right)^{2}-\left(1.944\,\frac{m}{s} \right)^{2}}{2\cdot \left(35\,\frac{m}{s^{2}} \right)}

\Delta s = 0.345\,m.

8 0
3 years ago
Why potential energy become equal to kinetic energy at height
Gennadij [26K]

Answer:

because potentil energy is redy to go but its bound up

And kinetic energy is in motion

Explanation:

7 0
3 years ago
Read 2 more answers
Even if there were some friction on the ice, it is still possible to use conservation of momentum to solve this problem, but you
hjlf

The problem referred to in this question is missing and it is;

Two hockey pucks of identical mass are on a flat, horizontal ice hockey rink. The red puck is motionless; the blue puck is moving at 2.5 m/s to the left. It collides with the motionless red puck. The pucks have a mass of 15 g. After the collision, the red puck is moving at 2.5 m/s, to the left. What is the final velocity of the blue puck?

Answer:

The condition is that p_f - p_i which is the change in momentum will not be equal to zero but equal to the impulse (Ft).

Explanation:

In the problem described, by inspection, we can say that since there is no friction, we have a closed system and thus momentum is conserved.

Since momentum is conserved, we can say that;

Initial momentum(p_i) = final momentum(p_f)

Now, in this question we are told that some friction wants to be introduced on the ice and it's possible to still use conservation of momentum.

From impulse - momentum theory, we know that;

Impulse = change in momentum

Impulse is zero when no force is acting on the ice and we have; 0 = p_f - p_i

This will yield initial momentum = final momentum.

Now, since a force is applied, we know that impulse is; J = F × t

Thus;

Ft = p_f - p_i

Where F is the force due to friction.

Thus, the condition is that p_f - p_i will not be equal to zero

6 0
2 years ago
What process occurs when all of the energy from light waves is transferred to a medium?
Wittaler [7]
Absorption happens when <span>all of the energy from light waves is transferred to a medium.</span>
8 0
2 years ago
Read 2 more answers
A 72.8-kg swimmer is standing on a stationary 265-kg floating raft. The swimmer then runs off the raft horizontally with a veloc
nalin [4]

Answer:

-1.43 m/s relative to the shore

Explanation:

Total momentum must be conserved before and after the run. Since they were both stationary before, their total speed, and momentum, is 0, so is the total momentum after the run off:

m_sv_s + m_rv_r = 0

where m_s = 72.8, m_r = 265 are the mass of the swimmer and raft, respectively. v_s = 5.21 m/s, v_r are the velocities of the swimmer and the raft after the run, respectively. We can solve for v_r

265v_r + 72.8*5.21 = 0

v_b = -72.8*5.21/265 = -1.43 m/s

So the recoil velocity that the raft would have is -1.43 m/s after the swimmer runs off, relative to the shore

7 0
3 years ago
Other questions:
  • If a 2 kg ball traveling at 10 m/s hits a wall and stops in 0.03 seconds, then how much force will the ball experience?
    13·1 answer
  • A wheel rotates about a fixed axis with a constant angular acceleration of 4.0 rad/s2. The diameter of the wheel is 40 cm. What
    11·1 answer
  • A specific example of how light year is used in space exploration. Pick one object in space (the nearest star, the nearest galax
    5·1 answer
  • A "8" grams box is pushed with a force of 100 N for 1m whereas opposing force is 10 N. A) Find the net work done on the box. B)
    13·1 answer
  • One complete wave passes a putrefying pile of poached pickerel in 0.50 seconds. The piled pickerel protrude 20 cm along the beac
    10·1 answer
  • Which of the following are physical properties of non-metals? Select all that apply.
    11·2 answers
  • The electric resistance in a length of wire is doubled when the wire is _________.
    6·1 answer
  • A worker on the roof of a house drops his hammer, which slides down the roof at a constant speed of 4 m/s. The roof makes an ang
    5·1 answer
  • What would be 1/2 times 800?
    5·1 answer
  • Suppose that 2 J of work is needed to stretch a spring from its natural length of 34 cm to a length of 46 cm. (a) How much work
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!