<span>A series circuit has one path for electrons, but a parallel circuit has more than one path.</span>
Change in velocity = d(v)
d(v) = v2 - v1 where v1 = initial speed, v2 = final speed
v1 = 28.0 m/s to the right
v2 = 0.00 m/s
d(v) = (0 - 28)m/s = -28 m/s to the right
Change in time = d(t)
d(t) = t2 - t1 where t1 = initial elapsed time, t2 = final elapsed time
t1 = 0.00 s
t2 = 5.00 s
d(t) = (5.00 - 0.00)s = 5.00s
Average acceleration = d(v) / d(t)
(-28.0 m/s) / (5.00 s)
(-28.0 m)/s * 1 / (5.00 s) = -5.60 m/s² to the right
Acceleration due to gravity will be constant, but the speed can change.
Answer:
0.20
Explanation:
The box is moving at constant velocity, which means that its acceleration is zero; so, the net force acting on the box is zero as well.
There are two forces acting in the horizontal direction:
- The pushing force: F = 99 N, forward
- The frictional force:
, backward, with
coefficient of kinetic friction
m = 50 kg mass of the box
g = 9.8 m/s^2 gravitational acceleration
The net force must be zero, so we have

which we can solve to find the coefficient of kinetic friction:
