Using the ideal gas equation pV = nRT, where R is the ideal gas constant, we can show that p=nRT/V. Since n, R and T are all constants, p2/p1 = V1/V2 where p1 and p2 are the start and final pressures respectively and V1 and V2 are the start and final volumes respectively. For if p1 = 3*p2, the pressure would have fallen to one third of its original value, and it follows that V2 = 3*V1. Therefore, for the pressure to fall to a third of its original value, the volume must increase by a factor of 3.
Answer:
Molarity = 0.002 M
Explanation:
Given data:
Mass of calcium chloride = 0.321 g
Volume of water = 1.45 L
Molarity of solution = ?
Solution:
Molarity = number of moles / volume in litter.
We will calculate the number of moles of calcium chloride first.
Number of moles = mass/molar mass
Number of moles = 0.321 g/ 110.98 g/mol
Number of moles = 0.003 mol
Molarity:
Molarity = 0.003 mol / 1.45 L
Molarity = 0.002 M
Answer: Option (b) is the correct answer.
Explanation:
Buffere is defined as the solution to whom when an acid or base is added then it resists any in change in pH of the solution.
This is because a buffer has the ability to not get affected by the addition of small amounts of an acid or a base. So, basically it keeps the concentration of both hydrogen ions and hydroxides equal. As a result, it helps in maintaining the pH of the solution.
And, the capacity of a buffer solution to resist the change is known as buffer capacity.
Thus, we can conclude that buffering capacity refers to the extent to which a buffer solution can counteract the effect of added acid or base.
Answer:
El aire es una mezcla de gases que forman la atmósfera, es por ello que se encuentra en todas partes. Sus componentes principales son el nitrógeno, oxígeno, dióxido de carbono, neón, helio, entre otros.