The end behaviour of the polynomial graph is (b) x ⇒ +∝, f(x) ⇒ -∝ and x ⇒ -∝, f(x) ⇒ -∝
<h3>How to determine the end behaviour of the polynomial graph?</h3>
The polynomial graph represents the given parameter
This polynomial graph is a quadratic function opened downwards
Polynomial function of this form have the following end behaviour:
- As x increases, f(x) decreases
- As x decreases, f(x) decreases
This is represented as
x ⇒ +∝, f(x) ⇒ -∝ and x ⇒ -∝, f(x) ⇒ -∝
Hence, the end behaviour is (b)
Read more about end behaviour at
brainly.com/question/1365136
#SPJ1
This question wants you to find a common denominator for the fractions.
This means finding the LCM, least common multiple, for 21 and 9.
This can be done by listing the multiples for each number until they meet at a common one.
9:
9
18
27
36
45
54
63
21:
21
42
63
This means the LCM of 21 and 9 is 63.
So the lowest possible common denominator is 63.
21 • 3 = 63
So you have to multiply the numerator of 2/21 by 3 as well.
2 • 3 = 6
2/21 = 6/63
Now do the same for 1/9.
9 • 7 = 63
Multiply the numerator, 1, by 7.
1 • 7 = 7
1/9 = 7/63
So in the first blanks, you would put 6/63 for what 2/21 is equal to and 7/63 for what 1/9 is equal to.
7/63 is greater than 6/63.
7/63 > 6/63
That means 1/9 > 2/21
So 2/21 < 1/9 is the answer to the last blank.
Hope this helps!