Answer:
8F_i = 3F_f
Explanation:
When two identical spheres are touched to each other, they equally share the total charge. Therefore, When neutral C is first touch to A, they share the initial charge of A equally.
Let us denote that the initial charge of A and B are Q. Then after C is touched to A, their respective charges are Q/2.
Then, C is touched to B, and they share the total charge of Q + Q/2 = 3Q/2. Their respective charges afterwards is 3Q/4 each.
The electrostatic force, Fi, in the initial configuration can be calculated as follows.
![F_i = \frac{1}{4\pi\epsilon_0}\frac{q_Aq_B}{r^2} = \frac{1}{4\pi\epsilon_0}\frac{Q^2}{r^2}[/tex}The electrostatic force, Ff, in the final configuration is [tex]F_f = \frac{1}{4\pi\epsilon_0}\frac{q_Aq_B}{r^2} = \frac{1}{4\pi\epsilon_0}\frac{3Q^2/8}{r^2}[/tex}Therefore, the relation between Fi and Ff is as follows[tex]F_i = F_f\frac{3}{8}\\8F_i = 3F_f](https://tex.z-dn.net/?f=F_i%20%3D%20%5Cfrac%7B1%7D%7B4%5Cpi%5Cepsilon_0%7D%5Cfrac%7Bq_Aq_B%7D%7Br%5E2%7D%20%3D%20%5Cfrac%7B1%7D%7B4%5Cpi%5Cepsilon_0%7D%5Cfrac%7BQ%5E2%7D%7Br%5E2%7D%5B%2Ftex%7D%3C%2Fp%3E%3Cp%3EThe%20electrostatic%20force%2C%20Ff%2C%20in%20the%20final%20configuration%20is%20%3C%2Fp%3E%3Cp%3E%5Btex%5DF_f%20%3D%20%5Cfrac%7B1%7D%7B4%5Cpi%5Cepsilon_0%7D%5Cfrac%7Bq_Aq_B%7D%7Br%5E2%7D%20%3D%20%5Cfrac%7B1%7D%7B4%5Cpi%5Cepsilon_0%7D%5Cfrac%7B3Q%5E2%2F8%7D%7Br%5E2%7D%5B%2Ftex%7D%3C%2Fp%3E%3Cp%3ETherefore%2C%20the%20relation%20between%20Fi%20and%20Ff%20is%20as%20follows%3C%2Fp%3E%3Cp%3E%5Btex%5DF_i%20%3D%20F_f%5Cfrac%7B3%7D%7B8%7D%5C%5C8F_i%20%3D%203F_f)
Answer:
14,700 N
Explanation:
The hyppo is standing completely submerged on the bottom of the lake. Since it is still, it means that the net force acting on it is zero: so, the weight of the hyppo (W), pushing downward, is balanced by the upward normal force, N:
(1)
the weight of the hyppo is

where m is the hyppo's mass and g is the gravitational acceleration; therefore, solving eq.(1) for N, we find

Answer:
I think he answer is C but I could be wrong
Explanation:
brainliest plz
<u>Thermal energy</u><u> from the room-temperature water will continuously flow to the boiling water.</u>
- The second law states, in a straightforward manner, that heat cannot naturally go "uphill."
- When a pan of boiling water and a pan of ice are in touch, the hot water cools and the ice melts and warms up.
<h3>
THE FIRST LAW OF THERMODYNAMICS</h3>
- Adiabatic Process - is a procedure that is carried out without the system's heat content changing.
- Water is heated to a temperature of 1000C during the boiling process, making it an isothermal process. As steam, the excess heat leaves the system.
Learn more about first law of thermodynamics brainly.com/question/3808473
#SPJ4
If a mass of a neutron is 1 the electron mass is 0.00054386734 and it's charge is negative. Hope this helps! ;)