Well if you had either the velocity or distance traveled i could tell you. But since you haven't all i can say for sure is that the water slowed the bullet down to 13m/s so lets say you knew the distance you would calculate how many meters it traveled and you would have your answer because in this situation, meters (height) =how many seconds spent going into the air.
<h2>
Answer:</h2>
0.126m
<h2>
Explanation:</h2>
According to Hooke's law, the force (F) acting on a spring to cause an extension or compression (e) is given by;
F = k x e -------------------(i)
Where;
k = the spring's constant.
From the question, the force acting on the spring is the weight(W) of the mass. i.e
F = W -----------------------(ii)
<em>But;</em>
W = m x g;
where;
m = mass of the object
g = acceleration due to gravity [usually taken as 10m/s²]
<em>From equation (ii), it implies that;</em>
F = W = m x g
<em>Now substitute F = m x g into equation(i) as follows;</em>
F = k x e
m x g = k x e ------------------(iii)
<em>From the question;</em>
m = m1 = 3.5kg
k = 278N/m
<em>Substitute these values into equation (iii) as follows;</em>
3.5 x 10 = 278 x e
35 = 278e
<em>Now solve for e;</em>
e = 35/278
e = 0.126m
Therefore, the distance the spring is stretched from its unstretched length (which is the same as the extension of the spring) is 0.126m
Answer:
a) The strength of gravity decreases if one moved away from Jupiter
b) The strength of gravity increases if one fell into Jupiter
Explanation:
The gravitational attraction is given by Newton law of gravitation as follows;

Where;
G = The universal gravitational constant = 6.67408 × 10⁻¹¹ m³/(kg·s²)
M = The mass of Jupiter
m = The mass of the nearby body
R = The distance between the centers of Jupiter and the body
From the equation, we have that the gravitational strength varies inversely with the square of the separation distance between two bodies
Therefore, as one moves away, R increases, and the strength of gravity reduces
Similarly as the body falls into Jupiter, R, reduces the gravitational strength increases.
From the first law of thermodynamics, we use the equation expressed as:
ΔH = Q + W
where Q is the heat absorbed of the system and W is the work done.
We calculate as follows:
ΔH = Q + W
ΔH = 829 J + 690 J = 1519 J
Hope this answers the question. Have a nice day.
The correct answer is "C". 'Old theories are adjusted to incorporate all old new information.' This makes the most sense, regarded the old and new information should be taken into consideration.
I hope this helped you!
Brainliest answer is always appreciated!