Answer:
5.0x10⁻⁵ M
Explanation:
It seems the question is incomplete, however this is the data that has been found in a web search:
" One way the U.S. Environmental Protection Agency (EPA) tests for chloride contaminants in water is by titrating a sample of silver nitrate solution. Any chloride anions in solution will combine with the silver cations to produce bright white silver chloride precipitate. Suppose a EPA chemist tests a 250 mL sample of groundwater known to be contaminated with nickel(II) chloride, which would react with silver nitrate solution like this:
NiCl₂ + 2AgNO₃ → 2AgCl + Ni(NO₃)₂
The chemist adds 50 mM silver nitrate solution to the sample until silver chloride stops forming. She then washes, dries, and weighs the precipitate. She finds she has collected 3.6 mg of silver chloride. Calculate the concentration of nickel(II) chloride contaminant in the original groundwater sample. Round your answer to 2 significant digits. "
Keep in mind that while the process is the same, if the values in your question are different, then your answer will be different as well.
First we <u>calculate the moles of nickel chloride found in the 250 mL sample</u>:
- 3.6 mg AgCl ÷ 143.32 mg/mmol *
= 0.0126 mmol NiCl₂
Now we <u>divide the moles by the volume to calculate the molarity</u>:
- 0.0126 mmol / 250 mL = 5.0x10⁻⁵M
Answer: Option (C) is the correct answer.
Explanation:
When chemical composition of a substance is not changing in a chemical reaction then it is known as a physical change.
For example, when water change state, from ice to steam then it means solid state is changing into gaseous state.
Therefore, it is a physical change.
And, a reaction which causes change in chemical composition is known as a chemical change.
For example, 
Thus, we can conclude that we can see water change state, from ice to steam. This is a physical change in matter.
Answer:
A wave is a disturbance that carries energy from one place to another through matter and space. When we through a stone or a pebble in calm water, then the particles of water moves up and down and this process continues for some time. This implies that there is a disturbance produced in water.
Explanation:
Answer:
Explanation:
a) For diatomic gas: Translational motion = 3 and rotational motion = 2
∴ Total (internal energy) = 3 + 2 = 5
b) Translational + Rotational + Vibrational = 3 + 2 + 1 = 6
c) Linear molecule
i) Non linear molecule
ii) Monatomic molecule
D, the rate increases as concentrations increase.
Typically, reaction rates decrease with time because reactant concentrations decrease as reactions are converted to products. Reaction rates generally increase when reactant concentrations are increased.