<span>a) 7.9x10^9
b) 1.5x10^9
c) 3.9x10^4
To determine what percentage of an isotope remains after a given length of time, you can use the formula
p = 2^(-x)
where
p = percentage remaining
x = number of half lives expired.
The number of half lives expired is simply
x = t/h
where
x = number of half lives expired
t = time spent
h = length of half life.
So the overall formula becomes
p = 2^(-t/h)
And since we're starting with 1.1x10^10 atoms, we can simply multiply that by the percentage. So, the answers rounding to 2 significant figures are:
a) 1.1x10^10 * 2^(-5/10.5) = 1.1x10^10 * 0.718873349 = 7.9x10^9
b) 1.1x10^10 * 2^(-30/10.5) = 1.1x10^10 * 0.138011189 = 1.5x10^9
c) 1.1x10^10 * 2^(-190/10.5) = 1.1x10^10 * 3.57101x10^-6 = 3.9x10^4</span>
Answer:
the rate increases
Explanation:
they are closer to each other, they will collide with each other more frequently and more successful collision
Your question is incomplete. However, I found a similar problem fromanother website as shown in the attached picture.
To solve this problem, you must know that at STP, the volume for any gas is 22.4 L/mol. So,
Moles O₂: 156.8 mL * 1 L/1000 mL* 1 mol/22.4 L = 0.007 moles
Mass calcium: 0.007 mol O₂ * 2 mol Ca/1 mol O₂ * 40 g/mol Ca =
<em> 0.56 g Ca</em>
Sodium reacts with water to form a colorless solution of sodium hydroxide and hydrogen gas.